
CC Mode 5.28

A GNU Emacs mode for editing C and C-like languages

Barry A. Warsaw, Martin Stjernholm

Copyright c© 1995, 96, 97, 98, 99, 2000, 2001 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being “The GNU Manifesto”,
“Distribution” and “GNU GENERAL PUBLIC LICENSE”, with the Front-Cover texts
being “A GNU Manual”, and with the Back-Cover Texts as in (a) below. A copy of the
license is included in the section entitled “GNU Free Documentation License” in the Emacs
manual.
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify this GNU
Manual, like GNU software. Copies published by the Free Software Foundation raise funds
for GNU development.”
This document is part of a collection distributed under the GNU Free Documentation
License. If you want to distribute this document separately from the collection, you can do
so by adding a copy of the license to the document, as described in section 6 of the license.

Chapter 1: Introduction 1

1 Introduction

Welcome to CC Mode, a GNU Emacs mode for editing files containing C, C++, Objective-
C, Java, CORBA IDL, and Pike code. This incarnation of the mode is descendant from
‘c-mode.el’ (also called "Boring Old C Mode" or BOCM :-), and ‘c++-mode.el’ version 2,
which Barry has been maintaining since 1992. CC Mode represents a significant milestone
in the mode’s life. It has been fully merged back with Emacs 19’s ‘c-mode.el’. Also a
new, more intuitive and flexible mechanism for controlling indentation has been developed.
Late in 1997, Martin joined the CC Mode Maintainers Team, and implemented the Pike
support. As of 2000 Martin has taken over as the sole maintainer.

This manual describes CC Mode version 5.28.
CC Mode supports the editing of K&R and ANSI C, ARM1 C++, Objective-C, Java,

CORBA’s Interface Definition Language, and Pike2 files. In this way, you can easily set up
consistent coding styles for use in editing all of these languages. CC Mode does not handle
font-locking (a.k.a. syntax coloring, keyword highlighting) or anything of that nature, for
any of these modes. Font-locking is handled by other Emacs packages.

This manual will describe the following:
• How to get started using CC Mode.
• How the new indentation engine works.
• How to customize the new indentation engine.

Note that the name of this package is “CC Mode,” but there is no top level cc-mode
entry point. All of the variables, commands, and functions in CC Mode are prefixed with c-
<thing>, and c-mode, c++-mode, objc-mode, java-mode, idl-mode, and pike-mode entry
points are provided. This package is intended to be a replacement for ‘c-mode.el’ and
‘c++-mode.el’.

This distribution also contains a file called ‘cc-compat.el’ which should ease your tran-
sition from BOCM to CC Mode. If you have a BOCM configuration you are really happy
with, and want to postpone learning how to configure CC Mode, take a look at that file.
It maps BOCM configuration variables to CC Mode’s new indentation model. It is not
actively supported so for the long run, you should learn how to customize CC Mode to
support your coding style.

A special word of thanks goes to Krishna Padmasola for his work in converting the
original ‘README’ file to Texinfo format. I’d also like to thank all the CC Mode victims who
help enormously during the early beta stages of CC Mode’s development.

1 The Annotated C++ Reference Manual, by Ellis and Stroustrup.
2 A C-like scripting language with its roots in the LPC language used in some MUD engines. See
http://pike.idonex.se/.

Chapter 2: Getting Connected 2

2 Getting Connected

If you got this version of CC Mode with Emacs or XEmacs, it should work just fine right
out of the box. Note however that you may not have the latest CC Mode release and may
want to upgrade your copy.

If you are upgrading an existing CC Mode installation, please see the ‘README’ file for
installation details. CC Mode may not work with older versions of Emacs or XEmacs. See
the CC Mode release notes Web pages for the latest information on Emacs version and
package compatibility (see Appendix B [Getting the Latest CC Mode Release], page 59).

Note that CC Mode no longer works with Emacs 18!, so if you haven’t upgraded from
Emacs 18 by now, you are out of luck.

You can find out what version of CC Mode you are using by visiting a C file and entering
M-x c-version RET. You should see this message in the echo area:

Using CC Mode version 5.XX

where ‘XX’ is the minor release number.

Chapter 3: New Indentation Engine 3

3 New Indentation Engine

CC Mode has a new indentation engine, providing a simplified, yet flexible and general
mechanism for customizing indentation. It separates indentation calculation into two steps:
first, CC Mode analyzes the line of code being indented to determine the kind of language
construct it’s looking at, then it applies user defined offsets to the current line based on this
analysis.

This section will briefly cover how indentation is calculated in CC Mode. It is important
to understand the indentation model being used so that you will know how to customize
CC Mode for your personal coding style.

3.1 Syntactic Analysis

The first thing CC Mode does when indenting a line of code, is to analyze the line,
determining the syntactic component list of the construct on that line. A syntactic com-
ponent consists of a pair of information (in lisp parlance, a cons cell), where the first part
is a syntactic symbol, and the second part is a relative buffer position. Syntactic symbols
describe elements of C code1, e.g. statement, substatement, class-open, class-close,
etc. See Chapter 8 [Syntactic Symbols], page 35, for a complete list of currently recognized
syntactic symbols and their semantics. The style variable c-offsets-alist also contains
the list of currently supported syntactic symbols.

Conceptually, a line of C code is always indented relative to the indentation of some line
higher up in the buffer. This is represented by the relative buffer position in the syntactic
component.

Here is an example. Suppose we had the following code as the only thing in a C++
buffer2:

1: void swap(int& a, int& b)
2: {
3: int tmp = a;
4: a = b;
5: b = tmp;
6: }

We can use the command C-c C-s (c-show-syntactic-information) to simply report
what the syntactic analysis is for the current line. Running this command on line 4 of this
example, we’d see in the echo area3:

((statement . 35))

1 Unless otherwise noted, the term “C code” to refers to all the C-like languages.
2 The line numbers in this and future examples don’t actually appear in the buffer, of course!
3 With a universal argument (i.e. C-u C-c C-s) the analysis is inserted into the buffer as a comment on

the current line.

Chapter 3: New Indentation Engine 4

This tells us that the line is a statement and it is indented relative to buffer position 35,
which happens to be the ‘i’ in int on line 3. If you were to move point to line 3 and hit
C-c C-s, you would see:

((defun-block-intro . 29))

This indicates that the ‘int’ line is the first statement in a top level function block, and
is indented relative to buffer position 29, which is the brace just after the function header.

Here’s another example:

1: int add(int val, int incr, int doit)
2: {
3: if(doit)
4: {
5: return(val + incr);
6: }
7: return(val);
8: }

Hitting C-c C-s on line 4 gives us:

((substatement-open . 46))

which tells us that this is a brace that opens a substatement block.4

Syntactic component lists can contain more than one component, and individual syntac-
tic components need not have relative buffer positions. The most common example of this
is a line that contains a comment only line.

1: void draw_list(List<Drawables>& drawables)
2: {
3: // call the virtual draw() method on each element in list
4: for(int i=0; i < drawables.count(), ++i)
5: {
6: drawables[i].draw();
7: }
8: }

Hitting C-c C-s on line 3 of this example gives:

((comment-intro) (defun-block-intro . 46))

and you can see that the syntactic component list contains two syntactic components. Also
notice that the first component, ‘(comment-intro)’ has no relative buffer position.

4 A substatement is the line after a conditional statement, such as if, else, while, do, switch, etc. A
substatement block is a brace block following one of these conditional statements.

Chapter 3: New Indentation Engine 5

3.2 Indentation Calculation

Indentation for a line is calculated using the syntactic component list derived in step 1
above (see Section 3.1 [Syntactic Analysis], page 3). Each component contributes to the
final total indentation of the line in two ways.

First, the syntactic symbols are looked up in the c-offsets-alist style variable, which
is an association list of syntactic symbols and the offsets to apply for those symbols. These
offsets are added to a running total.

Second, if the component has a relative buffer position, CC Mode adds the column
number of that position to the running total. By adding up the offsets and columns for
every syntactic component on the list, the final total indentation for the current line is
computed.

Let’s use our two code examples above to see how this works. Here is our first example
again:

1: void swap(int& a, int& b)
2: {
3: int tmp = a;
4: a = b;
5: b = tmp;
6: }

Let’s say point is on line 3 and we hit the TAB key to re-indent the line. Remember that
the syntactic component list for that line is:

((defun-block-intro . 29))

CC Mode looks up defun-block-intro in the c-offsets-alist style variable. Let’s say it
finds the value ‘4’; it adds this to the running total (initialized to zero), yielding a running
total indentation of 4 spaces.

Next CC Mode goes to buffer position 29 and asks for the current column. This brace
is in column zero, so CC Mode adds ‘0’ to the running total. Since there is only one
syntactic component on the list for this line, indentation calculation is complete, and the
total indentation for the line is 4 spaces.

Here’s another example:

1: int add(int val, int incr, int doit)
2: {
3: if(doit)
4: {
5: return(val + incr);
6: }
7: return(val);
8: }

Chapter 3: New Indentation Engine 6

If we were to hit TAB on line 4 in the above example, the same basic process is performed,
despite the differences in the syntactic component list. Remember that the list for this line
is:

((substatement-open . 46))

Here, CC Mode first looks up the substatement-open symbol in c-offsets-alist.
Let’s say it finds the value ‘4’. This yields a running total of 4. CC Mode then goes to
buffer position 46, which is the ‘i’ in if on line 3. This character is in the fourth column on
that line so adding this to the running total yields an indentation for the line of 8 spaces.

Simple, huh?
Actually, the mode usually just does The Right Thing without you having to think about

it in this much detail. But when customizing indentation, it’s helpful to understand the
general indentation model being used.

As you configure CC Mode, you might want to set the variable c-echo-syntactic-
information-p to non-nil so that the syntactic component list and calculated offset will
always be echoed in the minibuffer when you hit TAB.

Chapter 4: Minor Modes 7

4 Minor Modes

CC Mode contains two minor-mode-like features that you should find useful while you
enter new C code. The first is called auto-newline mode, and the second is called hungry-
delete mode. These minor modes can be toggled on and off independently, and CC Mode
can be configured so that it starts up with any combination of these minor modes. By
default, both of these minor modes are turned off.

The state of the minor modes is always reflected in the minor mode list on the modeline
of the CC Mode buffer. When auto-newline mode is enabled, you will see ‘C/a’ on the mode
line1. When hungry delete mode is enabled you would see ‘C/h’ and when both modes are
enabled, you’d see ‘C/ah’.

CC Mode provides key bindings which allow you to toggle the minor modes on the fly
while editing code. To toggle just the auto-newline state, hit C-c C-a (c-toggle-auto-
state). When you do this, you should see the ‘a’ indicator either appear or disappear on
the modeline. Similarly, to toggle just the hungry-delete state, use C-c C-d (c-toggle-
hungry-state), and to toggle both states, use C-c C-t (c-toggle-auto-hungry-state).

To set up the auto-newline and hungry-delete states to your preferred values, you would
need to add some lisp to your ‘.emacs’ file that called one of the c-toggle-*-state func-
tions directly. When called programmatically, each function takes a numeric value, where
a positive number enables the minor mode, a negative number disables the mode, and zero
toggles the current state of the mode.

So for example, if you wanted to enable both auto-newline and hungry-delete for all your
C file editing, you could add the following to your ‘.emacs’ file:

(add-hook ’c-mode-common-hook
(lambda () (c-toggle-auto-hungry-state 1)))

4.1 Auto-newline Insertion

Auto-newline minor mode works by enabling certain electric commands. Electric com-
mands are typically bound to special characters such as the left and right braces, colons,
semi-colons, etc., which when typed, perform some magic formatting in addition to insert-
ing the typed character. As a general rule, electric commands are only electric when the
following conditions apply:

• Auto-newline minor mode is enabled, as evidenced by a ‘C/a’ or ‘C/ah’ indicator on
the modeline.

• The character was not typed inside of a literal2.

• No numeric argument was supplied to the command (i.e. it was typed as normal, with
no C-u prefix).

1 The ‘C’ would be replaced with ‘C++’, ‘ObjC’, ‘Java’, ‘IDL’, or ‘Pike’ for the respective languages.
2 A literal is defined as any comment, string, or C preprocessor macro definition. These constructs are

also known as syntactic whitespace since they are usually ignored when scanning C code.

Chapter 4: Minor Modes 8

4.1.1 Hanging Braces

When you type either an open or close brace (i.e. { or }), the electric command c-
electric-brace gets run. This command has two electric formatting behaviors. First, it
will perform some re-indentation of the line the brace was typed on, and second, it will add
various newlines before and/or after the typed brace. Re-indentation occurs automatically
whenever the electric behavior is enabled. If the brace ends up on a line other than the one
it was typed on, then that line is also re-indented.

The default in auto-newline mode is to insert newlines both before and after a
brace, but that can be controlled by the c-hanging-braces-alist style variable. This
variable contains a mapping between syntactic symbols related to braces, and a list
of places to insert a newline. The syntactic symbols that are useful for this list are:
class-open, class-close, defun-open, defun-close, inline-open, inline-close,
brace-list-open, brace-list-close, brace-list-intro, brace-entry-open, block-
open, block-close, substatement-open, statement-case-open, extern-lang-open,
extern-lang-close, namespace-open, namespace-close, inexpr-class-open, and
inexpr-class-close3. See Chapter 8 [Syntactic Symbols], page 35, for a more
detailed description of these syntactic symbols, except for inexpr-class-open and
inexpr-class-close, which aren’t actual syntactic symbols.

The braces of anonymous inner classes in Java are given the special symbols inexpr-
class-open and inexpr-class-close, so that they can be distinguished from the braces
of normal classes4.

The value associated with each syntactic symbol in this association list is called an
ACTION which can be either a function or a list. See Section 7.5.2 [Custom Brace and
Colon Hanging], page 31, for a more detailed discussion of using a function as a brace
hanging ACTION.

When the ACTION is a list, it can contain any combination of the symbols before and
after, directing CC Mode where to put newlines in relationship to the brace being inserted.
Thus, if the list contains only the symbol after, then the brace is said to hang on the right
side of the line, as in:

// here, open braces always ‘hang’
void spam(int i) {

if(i == 7) {
dosomething(i);

}
}

3 Note that the aggregate constructs in Pike mode, ‘({’, ‘})’, ‘([’, ‘])’, and ‘(<’, ‘>)’, do not count as brace
lists in this regard, even though they do for normal indentation purposes. It’s currently not possible to
set automatic newlines on these constructs.

4 The braces of anonymous classes produces a combination of inexpr-class, and class-open or class-

close in normal indentation analysis.

Chapter 4: Minor Modes 9

When the list contains both after and before, the braces will appear on a line by
themselves, as shown by the close braces in the above example. The list can also be empty,
in which case no newlines are added either before or after the brace.

If a syntactic symbol is missing entirely from c-hanging-braces-alist, it’s treated in
the same way as an ACTION with a list containing before and after, so that braces by
default end up on their own line.

For example, the default value of c-hanging-braces-alist is:

((brace-list-open)
(brace-entry-open)
(substatement-open after)
(block-close . c-snug-do-while)
(extern-lang-open after)
(inexpr-class-open after)
(inexpr-class-close before))

which says that brace-list-open and brace-entry-open braces should both hang on
the right side, and allow subsequent text to follow on the same line as the brace. Also,
substatement-open, extern-lang-open, and inexpr-class-open braces should hang on
the right side, but subsequent text should follow on the next line. The opposite holds for
inexpr-class-close braces; they won’t hang, but the following text continues on the same
line. Here, in the block-close entry, you also see an example of using a function as an
ACTION. In all other cases, braces are put on a line by themselves.

A word of caution: it is not a good idea to hang top-level construct introducing braces,
such as class-open or defun-open. Emacs makes an assumption that such braces will
always appear in column zero, hanging them can introduce performance problems. See
Chapter 10 [Performance Issues], page 54, for more information.

4.1.2 Hanging Colons

Using a mechanism similar to brace hanging (see Section 4.1.1 [Hanging Braces], page 8),
colons can also be made to hang using the style variable c-hanging-colons-alist. The
syntactic symbols appropriate for this association list are: case-label, label, access-
label, member-init-intro, and inher-intro. Note however that for c-hanging-colons-
alist, ACTIONs as functions are not supported. See also Section 7.5.2 [Custom Brace and
Colon Hanging], page 31 for details.

In C++, double-colons are used as a scope operator but because these colons always
appear right next to each other, newlines before and after them are controlled by a different
mechanism, called clean-ups in CC Mode. See Section 4.1.5 [Clean-ups], page 10, for details.

4.1.3 Hanging Semi-colons and Commas

Semicolons and commas are also electric in CC Mode, but since these characters do
not correspond directly to syntactic symbols, a different mechanism is used to determine
whether newlines should be automatically inserted after these characters. See Section 7.5.3
[Customizing Semi-colons and Commas], page 32, for details.

Chapter 4: Minor Modes 10

4.1.4 Other Electric Commands

A few other keys also provide electric behavior. For example # (c-electric-pound)
is electric when typed as the first non-whitespace character on a line. In this case, the
variable c-electric-pound-behavior is consulted for the electric behavior. This variable
takes a list value, although the only element currently defined is alignleft, which tells
this command to force the ‘#’ character into column zero. This is useful for entering C
preprocessor macro definitions.

Stars and slashes (i.e. * and /, c-electric-star and c-electric-slash respectively)
are also electric under certain circumstances. If a star is inserted as the second character of
a C style block comment on a comment-only line, then the comment delimiter is indented
as defined by c-offsets-alist. A comment-only line is defined as a line which contains
only a comment, as in:

void spam(int i)
{

// this is a comment-only line...
if(i == 7) // but this is not
{

dosomething(i);
}

}

Likewise, if a slash is inserted as the second slash in a C++ style line comment (also only
on a comment-only line), then the line is indented as defined by c-offsets-alist.

Less-than and greater-than signs (c-electric-lt-gt) are also electric, but only in C++
mode. Hitting the second of two < or > keys re-indents the line if it is a C++ style stream
operator.

The normal parenthesis characters ‘(’ and ‘)’ also reindent the current line if they are
used in normal code. This is useful for getting the closing parenthesis of an argument list
aligned automatically.

4.1.5 Clean-ups

Clean-ups are mechanisms complementary to colon and brace hanging. On the surface,
it would seem that clean-ups overlap the functionality provided by the c-hanging-*-alist
variables. Clean-ups are however used to adjust code “after-the-fact,” i.e. to adjust the
whitespace in constructs after they are typed.

Most of the clean-ups are only applicable to counteract automatically inserted newlines,
and will therefore only have any effect if the auto-newline minor mode is turned on. Others
will work all the time.

You can configure CC Mode’s clean-ups by setting the style variable c-cleanup-list,
which is a list of clean-up symbols. By default, CC Mode cleans up only the scope-
operator construct, which is necessary for proper C++ support. Note that clean-ups are
only performed when the construct does not occur within a literal (see Section 4.1 [Auto-
newline Insertion], page 7), and when there is nothing but whitespace appearing between
the individual components of the construct.

Chapter 4: Minor Modes 11

These are the clean-ups that only are active in the auto-newline minor mode:

• brace-else-brace — Clean up ‘} else {’ constructs by placing the entire construct
on a single line. Clean-up occurs when the open brace after the ‘else’ is typed. So for
example, this:

void spam(int i)
{

if(i==7)
{

dosomething();
}
else
{

appears like this after the open brace is typed:

void spam(int i)
{

if(i==7) {
dosomething();

} else {

• brace-elseif-brace — Similar to the brace-else-brace clean-up, but this cleans
up ‘} else if (...) {’ constructs. For example:

void spam(int i)
{

if(i==7)
{

dosomething();
}
else if(i==3)
{

appears like this after the open parenthesis is typed:

void spam(int i)
{

if(i==7) {
dosomething();

} else if(i==3)
{

and like this after the open brace is typed:

Chapter 4: Minor Modes 12

void spam(int i)
{

if(i==7) {
dosomething();

} else if(i==3) {

• brace-catch-brace — Analogous to brace-elseif-brace, but cleans up ‘} catch
(...) {’ in C++ and Java mode.

• empty-defun-braces — Clean up braces following a top-level function or class defini-
tion that contains no body. Clean up occurs when the closing brace is typed. Thus the
following:

class Spam
{
}

is transformed into this when the close brace is typed:

class Spam
{}

• defun-close-semi — Clean up the terminating semi-colon on top-level function or
class definitions when they follow a close brace. Clean up occurs when the semi-colon
is typed. So for example, the following:

class Spam
{
}
;

is transformed into this when the semi-colon is typed:

class Spam
{
};

• list-close-comma — Clean up commas following braces in array and aggregate ini-
tializers. Clean up occurs when the comma is typed.

• scope-operator — Clean up double colons which may designate a C++ scope operator
split across multiple lines5. Clean up occurs when the second colon is typed. You will
always want scope-operator in the c-cleanup-list when you are editing C++ code.

The following clean-ups are always active when they occur on c-cleanup-list, and are
thus not affected by the auto-newline minor mode:

5 Certain C++ constructs introduce ambiguous situations, so scope-operator clean-ups may not always
be correct. This usually only occurs when scoped identifiers appear in switch label tags.

Chapter 4: Minor Modes 13

• space-before-funcall — Insert a space between the function name and the opening
parenthesis of a function call. This produces function calls in the style mandated by
the GNU coding standards, e.g. ‘signal (SIGINT, SIG_IGN)’ and ‘abort ()’. Clean
up occurs when the opening parenthesis is typed.

• compact-empty-funcall — Clean up any space between the function name and the
opening parenthesis of a function call that have no arguments. This is typically used
together with space-before-funcall if you prefer the GNU function call style for
functions with arguments but think it looks ugly when it’s only an empty parenthesis
pair. I.e. you will get ‘signal (SIGINT, SIG_IGN)’, but ‘abort()’. Clean up occurs
when the closing parenthesis is typed.

4.2 Hungry-deletion of Whitespace

Hungry deletion of whitespace, or as it more commonly called, hungry-delete mode, is
a simple feature that some people find extremely useful. In fact, you might find yourself
wanting hungry-delete in all your editing modes!

In a nutshell, when hungry-delete mode is enabled, hitting the 〈Backspace〉 key6 will con-
sume all preceding whitespace, including newlines and tabs. This can really cut down on
the number of 〈Backspace〉’s you have to type if, for example you made a mistake on the
preceding line.

By default, when you hit the 〈Backspace〉 key CC Mode runs the command c-electric-
backspace, which deletes text in the backwards direction. When deleting a single character,
or when 〈Backspace〉 is hit in a literal (see Section 4.1 [Auto-newline Insertion], page 7), or
when hungry-delete mode is disabled, the function contained in the c-backspace-function
variable is called with one argument (the number of characters to delete). This variable is
set to backward-delete-char-untabify by default.

The default behavior of the 〈Delete〉 key depends on the flavor of Emacs you are using.
By default in XEmacs 20.3 and beyond, the 〈Delete〉 key is bound to c-electric-delete.
You control the direction that the 〈Delete〉 key deletes by setting the variable delete-key-
deletes-forward, a standard XEmacs variable. When this variable is non-nil and hungry-
delete mode is enabled, c-electric-delete will consume all whitespace following point.
When delete-key-deletes-forward is nil, it deletes all whitespace preceding point7

When deleting a single character, or if 〈Delete〉 is hit in a literal, or hungry-delete mode
is disabled, the function contained in c-delete-function is called with one argument: the
number of characters to delete. This variable is set to delete-char by default.

In Emacs 19 or Emacs 20, both the 〈Delete〉 and 〈Backspace〉 keys are bound to c-electric-
backspace, however you can change this by explicitly binding [delete]8.

6 I say “hit the 〈Backspace〉 key” but what I really mean is “when Emacs receives the BackSpace key event.”
The difference usually isn’t significant to most users, but advanced users will realize that under window
systems such as X, any physical key (keycap) on the keyboard can be configured to generate any keysym,
and thus any Emacs key event. Also, the use of Emacs on TTYs will affect which keycap generates which
key event. From a pedantic point of view, here we are only concerned with the key event that Emacs
receives.

7 i.e. it literally calls c-electric-backspace.
8 E.g. to c-electric-delete in your ‘.emacs’ file. Note however, that Emacs 20 does not have a standard

variable such as delete-key-deletes-forward.

Chapter 4: Minor Modes 14

XEmacsen older than 20.3 behave similar to Emacs 19 and Emacs 20.

Chapter 5: Text Filling and Line Breaking 15

5 Text Filling and Line Breaking

Since there’s a lot of normal text in comments and string literals, CC Mode provides
features to edit these like in text mode. The goal is to do it as seamlessly as possible, i.e.
you can use auto fill mode, sentence and paragraph movement, paragraph filling, adaptive
filling etc wherever there’s a piece of normal text without having to think much about it.
CC Mode should keep the indentation, fix the comment line decorations, and so on, for
you. It does that by hooking in on the different line breaking functions and tuning relevant
variables as necessary.

To make Emacs recognize comments and treat text in them as normal paragraphs,
CC Mode makes several standard variables1 buffer local and modifies them according to
the language syntax and the style of line decoration that starts every line in a comment.
The style variable c-comment-prefix-regexp contains the regexp used to recognize this
comment line prefix. The default is ‘//+\\|**’, which matches C++ style line comments
like

// blah blah

with two or more slashes in front of them, and C style block comments like

/*
* blah blah
*/

with zero or more stars at the beginning of every line. If you change that variable, please
make sure it still matches the comment starter (i.e. //) of line comments and the line prefix
inside block comments. Also note that since CC Mode uses the value of c-comment-prefix-
regexp to set up several other variables at mode initialization, you need to reinitialize the
program mode if you change it inside a CC Mode buffer.

Line breaks are by default handled (almost) the same regardless whether they are made
by auto fill mode (see section “Auto Fill” in The Emacs Editor), paragraph filling (e.g.
with M-q), or explicitly with M-j or similar methods. In string literals, the new line gets the
same indentation as the previous nonempty line (may be changed with the string syntactic
symbol). In comments, CC Mode uses c-comment-prefix-regexp to adapt the line prefix
from the other lines in the comment.

CC Mode uses adaptive fill mode (see section “Adaptive Fill” in The Emacs Editor)
to make Emacs correctly keep the line prefix when filling paragraphs. That also makes
Emacs preserve the text indentation inside the comment line prefix. E.g. in the following
comment, both paragraphs will be filled with the left margins kept intact:

1 comment-start, comment-end, comment-start-skip, paragraph-start, paragraph-separate,
paragraph-ignore-fill-prefix, adaptive-fill-mode, adaptive-fill-regexp, and adaptive-fill-

first-line-regexp.

Chapter 5: Text Filling and Line Breaking 16

/* Make a balanced b-tree of the nodes in the incoming
* stream. But, to quote the famous words of Donald E.
* Knuth,
*
* Beware of bugs in the above code; I have only
* proved it correct, not tried it.
*/

It’s also possible to use other adaptive filling packages, notably Kyle E. Jones’ Filladapt
package2, which handles things like bulleted lists nicely. There’s a convenience function c-
setup-filladapt that tunes the relevant variables in Filladapt for use in CC Mode. Call
it from a mode hook, e.g. with something like this in your ‘.emacs’:

(defun my-c-mode-common-hook ()
(c-setup-filladapt)
(filladapt-mode 1))

(add-hook ’c-mode-common-hook ’my-c-mode-common-hook)

Normally the comment line prefix inserted for a new line inside a comment is deduced
from other lines in it. However there’s one situation when there’s no clue about how the
prefix should look, namely when a block comment is broken for the first time. The string in
the style variable c-block-comment-prefix3 is used in that case. It defaults to ‘* ’, which
makes a comment

/* Got O(n^2) here, which is a Bad Thing. */

break into

/* Got O(n^2) here,
* which is a Bad Thing. */

Note that it won’t work to justify the indentation by putting leading spaces in the c-
block-comment-prefix string, since CC Mode still uses the normal indentation engine to
indent the line. Thus, the right way to fix the indentation is by setting the c syntactic sym-
bol. It defaults to c-lineup-C-comments, which handles the indentation of most common
comment styles, see Chapter 9 [Indentation Functions], page 48.

When auto fill mode is enabled, CC Mode can selectively ignore it depending on the
context the line break would occur in, e.g. to never break a line automatically inside a
string literal. This behavior can be controlled with the c-ignore-auto-fill variable. It
takes a list of symbols for the different contexts where auto-filling never should occur:

2 It’s available from http://www.wonderworks.com/. As of version 2.12, it does however lack a feature
that makes it work suboptimally when c-comment-prefix-regexp matches the empty string (which it
does by default). A patch for that is available from the CC Mode site.

3 In versions before 5.26, this variable was called c-comment-continuation-stars. As a compatibility
measure, CC Mode still uses the value on that variable if it’s set.

Chapter 5: Text Filling and Line Breaking 17

• string — Inside a string or character literal.
• c — Inside a C style block comment.
• c++ — Inside a C++ style line comment.
• cpp — Inside a preprocessor directive.
• code — Anywhere else, i.e. in normal code.

By default, c-ignore-auto-fill is set to ’(string cpp code), which means that auto-
filling only occurs in comments when auto-fill mode is activated. In literals, it’s often
desirable to have explicit control over newlines. In preprocessor directives, the necessary
‘\’ escape character before the newline is not automatically inserted, so an automatic line
break would produce invalid code. In normal code, line breaks are normally dictated by
some logical structure in the code rather than the last whitespace character, so automatic
line breaks there will produce poor results in the current implementation.

The commands that does the actual work follows.

M-q (c-fill-paragraph)
This is the replacement for fill-paragraph in CC Mode buffers. It’s used to
fill multiline string literals and both block and line style comments. In Java
buffers, the Javadoc markup words are recognized as paragraph starters. The
line oriented Pike autodoc markup words are recognized in the same way in
Pike mode.
The function keeps the comment starters and enders of block comments as they
were before the filling. This means that a comment ender on the same line as
the paragraph being filled will be filled with the paragraph, and one on a line
by itself will stay as it is. The comment starter is handled similarly4.

M-j (c-indent-new-comment-line)
This is the replacement for indent-new-comment-line. It breaks the line at
point and indents the new line like the current one.
If inside a comment and comment-multi-line is non-nil, the indentation and
line prefix are preserved. If inside a comment and comment-multi-line is nil,
a new comment of the same type is started on the next line and indented as
appropriate for comments.

M-x c-context-line-break

This is a function that works like indent-new-comment-line in comments and
newline-and-indent elsewhere, thus combining those two in a way that uses
each one in the context it’s best suited for. I.e. in comments the comment line
prefix and indentation is kept for the new line, and in normal code it’s indented
according to context by the indentation engine.
It’s not bound to a key by default, but it’s intended to be used on the RET key.
If you like the behavior of newline-and-indent on RET, you might consider
switching to this function.

4 This means that the variables c-hanging-comment-starter-p and c-hanging-comment-ender-p, which
controlled this behavior in earlier versions of CC Mode, are now obsolete.

Chapter 6: Commands 18

6 Commands

See also Chapter 5 [Text Filling and Line Breaking], page 15, for commands concerning
that bit.

6.1 Indentation Commands

The following list of commands re-indent C constructs. Note that when you change
your coding style, either interactively or through some other means, your file does not
automatically get re-indented. You will need to execute one of the following commands to
see the effects of your changes.

Also, variables like c-hanging-* and c-cleanup-list only affect how on-the-fly code
is formatted. Changing the “hanginess” of a brace and then re-indenting, will not move the
brace to a different line. For this, you’re better off getting an external program like GNU
indent, which will re-arrange brace location, among other things.

Re-indenting large sections of code can take a long time. When CC Mode reindents
a region of code, it is essentially equivalent to hitting TAB on every line of the region.
Especially vulnerable is code generator output1.

These commands are useful when indenting code:

TAB (c-indent-command)
Indents the current line. The actual behavior is controlled by several variables,
described below. See c-tab-always-indent, c-insert-tab-function, and
indent-tabs-mode. With a numeric argument, this command rigidly indents
the region, preserving the relative indentation among the lines.

M-C-q (c-indent-exp)
Indent an entire balanced brace or parenthesis expression. Note that point must
be on the opening brace or parenthesis of the expression you want to indent.

C-c C-q (c-indent-defun)
Indents the entire top-level function or class definition encompassing point. It
leaves point unchanged. This function can’t be used to re-indent a nested brace
construct, such as a nested class or function, or a Java method. The top-
level construct being re-indented must be complete, i.e. it must have both a
beginning brace and an ending brace.

M-C-\ (indent-region)
Indents an arbitrary region of code. This is a standard Emacs command, tai-
lored for C code in a CC Mode buffer. Note that of course, point and mark
must delineate the region you want to indent.

M-C-h (c-mark-function)
While not strictly an indentation command, this is useful for marking the cur-
rent top-level function or class definition as the current region. As with c-

1 In particular, I have had people complain about the speed with which lex(1) output is re-indented. Lex,
yacc, and other code generators usually output some pretty perversely formatted code. Re-indenting
such code will be slow.

Chapter 6: Commands 19

indent-defun, this command operates on top-level constructs, and can’t be
used to mark say, a Java method.

These variables are also useful when indenting code:

c-tab-always-indent
This variable controls how TAB c-indent-command operates. When this variable
is t, TAB always just indents the current line. When it is nil, the line is indented
only if point is at the left margin, or on or before the first non-whitespace
character on the line, otherwise some whitespace is inserted. If this variable
is the symbol other, then some whitespace is inserted only within strings and
comments (literals), an inside preprocessor directives, but the line is always
reindented.

c-insert-tab-function
When “some whitespace” is inserted as described above, what actually happens
is that the function stored in c-insert-tab-function is called. Normally, this
just inserts a real tab character, or the equivalent number of spaces, depending
on indent-tabs-mode. Some people, however, set c-insert-tab-function to
tab-to-tab-stop so as to get hard tab stops when indenting.

indent-tabs-mode
This is a standard Emacs variable that controls how line indentation is com-
posed. When this variable is non-nil, then tabs can be used in a line’s inden-
tation, otherwise only spaces can be used.

c-progress-interval
When indenting large regions of code, this variable controls how often a progress
message is displayed. Set this variable to nil to inhibit the progress messages,
or set it to an integer which is the interval in seconds that progress messages
are displayed.

6.2 Movement Commands

CC Mode contains some useful command for moving around in C code.

M-x c-beginning-of-defun

Moves point back to the least-enclosing brace. This function is analogous
to the Emacs built-in command beginning-of-defun, except it eliminates
the constraint that the top-level opening brace must be in column zero. See
beginning-of-defun for more information.
Depending on the coding style being used, you might prefer c-beginning-of-
defun to beginning-of-defun. If so, consider binding C-M-a to the former
instead. For backwards compatibility reasons, the default binding remains in
effect.

M-x c-end-of-defun

Moves point to the end of the current top-level definition. This function is
analogous to the Emacs built-in command end-of-defun, except it eliminates

Chapter 6: Commands 20

the constraint that the top-level opening brace of the defun must be in column
zero. See beginning-of-defun for more information.
Depending on the coding style being used, you might prefer c-end-of-defun
to end-of-defun. If so, consider binding C-M-e to the former instead. For
backwards compatibility reasons, the default binding remains in effect.

C-c C-u (c-up-conditional)
Move point back to the containing preprocessor conditional, leaving the mark
behind. A prefix argument acts as a repeat count. With a negative argument,
move point forward to the end of the containing preprocessor conditional.
‘#elif’ is treated like ‘#else’ followed by ‘#if’, so the function stops at them
when going backward, but not when going forward.

M-x c-up-conditional-with-else

A variety of c-up-conditional that also stops at ‘#else’ lines. Normally those
lines are ignored.

M-x c-down-conditional

Move point forward into the next nested preprocessor conditional, leaving the
mark behind. A prefix argument acts as a repeat count. With a negative argu-
ment, move point backward into the previous nested preprocessor conditional.
‘#elif’ is treated like ‘#else’ followed by ‘#if’, so the function stops at them
when going forward, but not when going backward.

M-x c-down-conditional-with-else

A variety of c-down-conditional that also stops at ‘#else’ lines. Normally
those lines are ignored.

C-c C-p (c-backward-conditional)
Move point back over a preprocessor conditional, leaving the mark behind.
A prefix argument acts as a repeat count. With a negative argument, move
forward.

C-c C-n (c-forward-conditional)
Move point forward across a preprocessor conditional, leaving the mark behind.
A prefix argument acts as a repeat count. With a negative argument, move
backward.

M-a (c-beginning-of-statement)
Move point to the beginning of the innermost C statement. If point is already
at the beginning of a statement, move to the beginning of the closest preceding
statement, even if that means moving into a block (you can use M-C-b to move
over a balanced block). With prefix argument n, move back n − 1 statements.
If point is within or next to a comment or a string which spans more than one
line, this command moves by sentences instead of statements.
When called from a program, this function takes three optional arguments: the
repetition count, a buffer position limit which is the farthest back to search for
the syntactic context, and a flag saying whether to do sentence motion in or
near comments and multiline strings.

Chapter 6: Commands 21

M-e (c-end-of-statement)
Move point to the end of the innermost C statement. If point is at the end of
a statement, move to the end of the next statement, even if it’s inside a nested
block (use M-C-f to move to the other side of the block). With prefix argument
n, move forward n − 1 statements.
If point is within or next to a comment or a string which spans more than one
line, this command moves by sentences instead of statements.
When called from a program, this function takes three optional arguments: the
repetition count, a buffer position limit which is the farthest back to search for
the syntactic context, and a flag saying whether to do sentence motion in or
near comments and multiline strings.

M-x c-forward-into-nomenclature

A popular programming style, especially for object-oriented languages
such as C++ is to write symbols in a mixed case format, where the first
letter of each word is capitalized, and not separated by underscores. E.g.
‘SymbolsWithMixedCaseAndNoUnderlines’.
This command moves point forward to next capitalized word. With prefix
argument n, move n times.

M-x c-backward-into-nomenclature

Move point backward to beginning of the next capitalized word. With prefix
argument n, move n times. If n is negative, move forward.

6.3 Other Commands

CC Mode contains a few other useful commands:

C-c : (c-scope-operator)
In C++, it is also sometimes desirable to insert the double-colon scope operator
without performing the electric behavior of colon insertion. C-c : does just
this.

C-c C-\ (c-backslash-region)
This function is handy when editing macros split over several lines by ending
each line with a backslash. It inserts and aligns, or deletes these end-of-line
backslashes in the current region.
With no prefix argument, it inserts any missing backslashes and aligns them to
the column specified by the c-backslash-column style variable. With a prefix
argument, it deletes any backslashes.
The function does not modify blank lines at the start of the region. If the region
ends at the start of a line, it always deletes the backslash (if any) at the end of
the previous line.

Chapter 7: Customizing Indentation 22

7 Customizing Indentation

The style variable c-offsets-alist contains the mappings between syntactic symbols
and the offsets to apply for those symbols. It’s set at mode initialization from a style you
may specify. Styles are groupings of syntactic symbol offsets and other style variable values.
Most likely, you’ll find that one of the pre-defined styles will suit your needs. See Section 7.4
[Styles], page 26, for an explanation of how to set up named styles.

Only syntactic symbols not already bound on c-offsets-alist will be set from styles.
This means that any association you set on it, be it before or after mode initialization,
will not be changed. The c-offsets-alist variable may therefore be used from e.g. the
Customization interface1 to easily change indentation offsets without having to bother about
styles. Initially c-offsets-alist is empty, so that all syntactic symbols are set by the style
system.

You can use the command C-c C-o (c-set-offset) as the way to set offsets, both
interactively and from your mode hook2.

The offset associated with any particular syntactic symbol can be any of an integer, a
function or lambda expression, a variable name, a vector, a list, or one of the following
symbols: +, -, ++, --, *, or /.

Those last special symbols describe an offset in multiples of the value of the style variable
c-basic-offset. By defining a style’s indentation in terms of this fundamental variable,
you can change the amount of whitespace given to an indentation level while maintaining
the same basic shape of your code. Here are the values that the special symbols correspond
to:

+ c-basic-offset times 1

- c-basic-offset times -1

++ c-basic-offset times 2

-- c-basic-offset times -2

* c-basic-offset times 0.5

/ c-basic-offset times -0.5

When a function is used as offset, it’s called an indentation function. Such functions
are useful when more context than just the syntactic symbol is needed to get the desired
indentation. See Chapter 9 [Indentation Functions], page 48, and Section 7.5.1 [Custom
Indentation Functions], page 30, for details about them.

If the offset is a vector, its first element sets the absolute indentation column, which will
override any relative indentation.

The offset can also be a list, in which case it is evaluated recursively using the semantics
described above. The first element of the list that returns a non-nil value succeeds and

1 Available in Emacs 20 and later, and XEmacs 19.15 and later.
2 Obviously, you use the key binding interactively, and the function call programmatically!

Chapter 7: Customizing Indentation 23

the evaluation stops. If none of the list elements return a non-nil value, then an offset of
0 (zero) is used3.

So, for example, because most of the default offsets are defined in terms of +, -, and 0,
if you like the general indentation style, but you use 4 spaces instead of 2 spaces per level,
you can probably achieve your style just by changing c-basic-offset like so4:

M-x set-variable RET
Set variable: c-basic-offset RET
Set c-basic-offset to value: 4 RET

This would change

int add(int val, int incr, int doit)
{
if(doit)
{
return(val + incr);

}
return(val);

}

to

int add(int val, int incr, int doit)
{

if(doit)
{

return(val + incr);
}

return(val);
}

To change indentation styles more radically, you will want to change the offsets associated
with other syntactic symbols. First, I’ll show you how to do that interactively, then I’ll
describe how to make changes to your ‘.emacs’ file so that your changes are more permanent.

7.1 Interactive Customization

As an example of how to customize indentation, let’s change the style of this example5:

3 There is however a variable c-strict-syntax-p that, when set to non-nil, will cause an error to be
signalled in that case. It’s now considered obsolete since it doesn’t work well with some of the alignment
functions that now returns nil instead of zero to be more usable in lists. You should therefore leave
c-strict-syntax-p set to nil.

4 You can try this interactively in a C buffer by typing the text that appears in italics.
5 In this an subsequent examples, the original code is formatted using the ‘gnu’ style unless otherwise

indicated. See Section 7.4 [Styles], page 26.

Chapter 7: Customizing Indentation 24

1: int add(int val, int incr, int doit)
2: {
3: if(doit)
4: {
5: return(val + incr);
6: }
7: return(val);
8: }

to:

1: int add(int val, int incr, int doit)
2: {
3: if(doit)
4: {
5: return(val + incr);
6: }
7: return(val);
8: }

In other words, we want to change the indentation of braces that open a block following
a condition so that the braces line up under the conditional, instead of being indented.
Notice that the construct we want to change starts on line 4. To change the indentation
of a line, we need to see which syntactic components affect the offset calculations for that
line. Hitting C-c C-s on line 4 yields:

((substatement-open . 44))

so we know that to change the offset of the open brace, we need to change the indentation
for the substatement-open syntactic symbol. To do this interactively, just hit C-c C-o.
This prompts you for the syntactic symbol to change, providing a reasonable default. In
this case, the default is substatement-open, which is just the syntactic symbol we want to
change!

After you hit return, CC Mode will then prompt you for the new offset value, with the old
value as the default. The default in this case is ‘+’, but we want no extra indentation so enter
‘0’ and RET. This will associate the offset 0 with the syntactic symbol substatement-open.

To check your changes quickly, just hit C-c C-q (c-indent-defun) to reindent the entire
function. The example should now look like:

Chapter 7: Customizing Indentation 25

1: int add(int val, int incr, int doit)
2: {
3: if(doit)
4: {
5: return(val + incr);
6: }
7: return(val);
8: }

Notice how just changing the open brace offset on line 4 is all we needed to do. Since
the other affected lines are indented relative to line 4, they are automatically indented the
way you’d expect. For more complicated examples, this may not always work. The general
approach to take is to always start adjusting offsets for lines higher up in the file, then
re-indent and see if any following lines need further adjustments.

7.2 Permanent Customization

To make your changes permanent, you need to add some lisp code to your ‘.emacs’ file.
CC Mode supports many different ways to be configured, from the straightforward way by
setting variables globally in ‘.emacs’ or in the Customization interface, to the complex and
precisely controlled way by using styles and hook functions.

The simplest way of customizing CC Mode permanently is to set the variables in your
‘.emacs’ with setq and similar commands. So to make the setting of substatement-open
permanent, add this to the ‘.emacs’ file:

(require ’cc-mode)
(c-set-offset ’substatement-open 0)

The require line is only needed once in the beginning to make sure CC Mode is loaded
so that the c-set-offset function is defined.

You can also use the more user friendly Customization interface, but this manual does
not cover how that works.

Variables set like this at the top level in ‘.emacs’ take effect in all CC Mode buffers,
regardless of language. The indentation style related variables, e.g. c-basic-offset, that
you don’t set this way get their value from the style system (see Section 7.4 [Styles], page 26),
and they therefore depend on the setting of c-default-style. Note that if you use Cus-
tomize, this means that the greyed-out default values presented there might not be the
ones you actually get, since the actual values depend on the style, which may very well be
different for different languages.

If you want to make more advanced configurations, e.g. language-specific customiza-
tion, global variable settings isn’t enough. For that you can use the language hooks, see
Section 7.3 [Hooks], page 26, and/or the style system, see Section 7.4 [Styles], page 26.

By default, all style variables are global, so that every buffer will share the same style
settings. This is fine if you primarily edit one style of code, but if you edit several languages
and want to use different styles for them, you need finer control by making the style variables

Chapter 7: Customizing Indentation 26

buffer local. The recommended way to do this is to set the variable c-style-variables-
are-local-p to t. The variables will be made buffer local when CC Mode is activated in a
buffer for the first time in the Emacs session. Note that once the style variables are made
buffer local, they cannot be made global again, without restarting Emacs.

7.3 Hooks

CC Mode provides several hooks that you can use to customize the mode according to
your coding style. Each language mode has its own hook, adhering to standard Emacs
major mode conventions. There is also one general hook and one package initialization
hook:
• c-mode-hook — For C buffers only.
• c++-mode-hook — For C++ buffers only.
• objc-mode-hook — For Objective-C buffers only.
• java-mode-hook — For Java buffers only.
• idl-mode-hook — For CORBA IDL buffers only.
• pike-mode-hook — For Pike buffers only.
• c-mode-common-hook — Common across all languages.
• c-initialization-hook — Hook run only once per Emacs session, when CC Mode is

initialized.

The language hooks get run as the last thing when you enter that language mode. The
c-mode-common-hook is run by all supported modes before the language specific hook, and
thus can contain customizations that are common across all languages. Most of the examples
in this section will assume you are using the common hook.

Note that all the language-specific mode setup that CC Mode does is done prior to
both c-mode-common-hook and the language specific hook. That includes installing the
indentation style, which can be mode specific (and also is by default for Java mode). Thus,
any style settings done in c-mode-common-hook will override whatever language-specific
style is chosen by c-default-style.

Here’s a simplified example of what you can add to your ‘.emacs’ file to do things
whenever any CC Mode language is edited. See the Emacs manuals for more information
on customizing Emacs via hooks. See Appendix D [Sample .emacs File], page 61, for a more
complete sample ‘.emacs’ file.

(defun my-c-mode-common-hook ()
;; my customizations for all of c-mode and related modes
(no-case-fold-search)
)

(add-hook ’c-mode-common-hook ’my-c-mode-common-hook)

7.4 Styles

Most people only need to edit code formatted in just a few well-defined and consistent
styles. For example, their organization might impose a “blessed” style that all its program-

Chapter 7: Customizing Indentation 27

mers must conform to. Similarly, people who work on GNU software will have to use the
GNU coding style. Some shops are more lenient, allowing a variety of coding styles, and
as programmers come and go, there could be a number of styles in use. For this reason,
CC Mode makes it convenient for you to set up logical groupings of customizations called
styles, associate a single name for any particular style, and pretty easily start editing new
or existing code using these styles.

The variables that the style system affect are called style variables. They are handled
specially in several ways:

• Style variables are by default global variables, i.e. they have the same value in all
Emacs buffers. However, they can instead be made always buffer local by setting
c-style-variables-are-local-p to non-nil before CC Mode is initialized.

• The default value of any style variable (with two exceptions — see below) is the special
symbol set-from-style. Variables that are still set to that symbol when a CC Mode
buffer is initialized will be set according to the current style, otherwise they will keep
their current value6.
Note that when we talk about the “default value” for a style variable, we don’t mean
the set-from-style symbol that all style variables are set to initially, but instead the
value it will get at mode initialization when neither a style nor a global setting has set
its value.
The style variable c-offsets-alist is handled a little differently from the other style
variables. It’s an association list, and is thus by default set to the empty list, nil.
When the style system is initialized, any syntactic symbols already on it are kept —
only the missing ones are filled in from the chosen style.
The style variable c-special-indent-hook is also handled in a special way. Styles
may only add more functions on this hook, so the global settings on it are always
preserved7.

• The global settings of style variables get captured in the special user style, which is
used as the base for all the other styles. See Section 7.4.1 [Built-in Styles], page 27, for
details.

The style variables are: c-basic-offset, c-comment-only-line-offset,
c-block-comment-prefix, c-comment-prefix-regexp, c-cleanup-list, c-hanging-
braces-alist, c-hanging-colons-alist, c-hanging-semi&comma-criteria,
c-backslash-column, c-special-indent-hook, c-label-minimum-indentation, and
c-offsets-alist.

7.4.1 Built-in Styles

If you’re lucky, one of CC Mode’s built-in styles might be just what you’re looking for.
These include:

6 This is a big change from versions of CC Mode earlier than 5.26, where such settings would get overridden
by the style system unless special precautions were taken. That was changed since it was counterintuitive
and confusing, especially to novice users. If your configuration depends on the old overriding behavior,
you can set the variable c-old-style-variable-behavior to non-nil.

7 This did not change in version 5.26.

Chapter 7: Customizing Indentation 28

• gnu — Coding style blessed by the Free Software Foundation for C code in GNU
programs.

• k&r — The classic Kernighan and Ritchie style for C code.
• bsd — Also known as “Allman style” after Eric Allman.
• whitesmith — Popularized by the examples that came with Whitesmiths C, an early

commercial C compiler.
• stroustrup — The classic Stroustrup style for C++ code.
• ellemtel — Popular C++ coding standards as defined by “Programming in C++, Rules

and Recommendations,” Erik Nyquist and Mats Henricson, Ellemtel8.
• linux — C coding standard for Linux (the kernel).
• python — C coding standard for Python extension modules9.
• java — The style for editing Java code. Note that the default value for c-default-

style installs this style when you enter java-mode.
• user — This is a special style for several reasons. First, the CC Mode customizations

you do by using either the Customization interface, or by writing setq’s at the top
level of your ‘.emacs’ file, will be captured in the user style. Also, all other styles
implicitly inherit their settings from user style. This means that for any styles you
add via c-add-style (see Section 7.4.2 [Adding Styles], page 29) you need only define
the differences between your new style and user style.

The default style in all newly created buffers is gnu, but you can change this by setting
variable c-default-style. Although the user style is not the default style, any style
variable settings you do with the Customization interface or on the top level in your ‘.emacs’
file will by default override the style system, so you don’t need to set c-default-style to
user to see the effect of these settings.

c-default-style takes either a style name string, or an association list of major mode
symbols to style names. Thus you can control exactly which default style is used for which
CC Mode language mode. Here are the rules:
1. When c-default-style is a string, it must be an existing style name as found in

c-style-alist. This style is then used for all modes.
2. When c-default-style is an association list, the current major mode is looked up to

find a style name string. In this case, this style is always used exactly as specified and
an error will occur if the named style does not exist.

3. If c-default-style is an association list, but the current major mode isn’t found, then
the special symbol ‘other’ is looked up. If this value is found, the associated style is
used.

4. If ‘other’ is not found, then the ‘gnu’ style is used.
5. In all cases, the style described in c-default-style is installed before the language

hooks are run, so you can always override this setting by including an explicit call to
c-set-style in your language mode hook, or in c-mode-common-hook.

8 This document is available at http://www.doc.ic.ac.uk/lab/cplus/c++.rules/ among other places.
9 Python is a high level scripting language with a C/C++ foreign function interface. For more information,

see http://www.python.org/.

Chapter 7: Customizing Indentation 29

If you’d like to experiment with these built-in styles you can simply type the following
in a CC Mode buffer:

C-c . STYLE-NAME RET

C-c . runs the command c-set-style. Note that all style names are case insensitive, even
the ones you define.

Setting a style in this way does not automatically re-indent your file. For commands
that you can use to view the effect of your changes, see Chapter 6 [Commands], page 18.

Note that for BOCM compatibility, ‘gnu’ is the default style, and any non-style based
customizations you make (i.e. in c-mode-common-hook in your ‘.emacs’ file) will be based
on ‘gnu’ style unless you set c-default-style or do a c-set-style as the first thing in
your hook. The variable c-indentation-style always contains the buffer’s current style
name, as a string.

7.4.2 Adding Styles

If none of the built-in styles is appropriate, you’ll probably want to add a new style
definition. Styles are kept in the c-style-alist variable, but you should never modify this
variable directly. Instead, CC Mode provides the function c-add-style that you can use
to easily add new styles or change existing styles. This function takes two arguments, a
stylename string, and an association list description of style customizations. If stylename
is not already in c-style-alist, the new style is added, otherwise the style is changed to
the new description. This function also takes an optional third argument, which if non-nil,
automatically applies the new style to the current buffer.

The sample ‘.emacs’ file provides a concrete example of how a new style can be added
and automatically set. See Appendix D [Sample .emacs File], page 61.

7.4.3 File Styles

The Emacs manual describes how you can customize certain variables on a per-file basis
by including a Local Variable block at the end of the file. So far, you’ve only seen a
functional interface to CC Mode customization, which is highly inconvenient for use in
a Local Variable block. CC Mode provides two variables that make it easier for you to
customize your style on a per-file basis.

The variable c-file-style can be set to a style name string. When the file is visited,
CC Mode will automatically set the file’s style to this style using c-set-style.

Another variable, c-file-offsets, takes an association list similar to what is allowed
in c-offsets-alist. When the file is visited, CC Mode will automatically institute these
offsets using c-set-offset.

Note that file style settings (i.e. c-file-style) are applied before file offset settings
(i.e. c-file-offsets). Also, if either of these are set in a file’s local variable section, all
the style variable values are made local to that buffer.

Chapter 7: Customizing Indentation 30

7.5 Advanced Customizations

For most users, CC Mode will support their coding styles with very little need for more
advanced customizations. Usually, one of the standard styles defined in c-style-alist will
do the trick. At most, perhaps one of the syntactic symbol offsets will need to be tweaked
slightly, or maybe c-basic-offset will need to be changed. However, some styles require a
more flexible framework for customization, and one of the real strengths of CC Mode is that
the syntactic analysis model provides just such a framework. This allows you to implement
custom indentation calculations for situations not handled by the mode directly.

7.5.1 Custom Indentation Functions

The most flexible way to customize CC Mode is by writing custom indentation functions,
and associating them with specific syntactic symbols (see Chapter 8 [Syntactic Symbols],
page 35). CC Mode itself uses indentation functions to provide more sophisticated inden-
tation, for example when lining up C++ stream operator blocks:

1: void main(int argc, char**)
2: {
3: cout << "There were "
4: << argc
5: << "arguments passed to the program"
6: << endl;
7: }

In this example, lines 4 through 6 are assigned the stream-op syntactic symbol. Here,
stream-op has an offset of +, and with a c-basic-offset of 2, you can see that lines 4
through 6 are simply indented two spaces to the right of line 3. But perhaps we’d like CC
Mode to be a little more intelligent so that it aligns all the ‘<<’ symbols in lines 3 through 6.
To do this, we have to write a custom indentation function which finds the column of first
stream operator on the first line of the statement. Here is sample lisp code implementing
this:

(defun c-lineup-streamop (langelem)
;; lineup stream operators
(save-excursion
(let* ((relpos (cdr langelem))

(curcol (progn (goto-char relpos)
(current-column))))

(re-search-forward "<<\\|>>" (c-point ’eol) ’move)
(goto-char (match-beginning 0))
(- (current-column) curcol))))

Indentation functions take a single argument, which is a syntactic component cons cell (see
Section 3.1 [Syntactic Analysis], page 3). The function returns an integer offset value that
will be added to the running total indentation for the line. Note that what actually gets
returned is the difference between the column that the first stream operator is on, and the
column of the buffer relative position passed in the function’s argument. Remember that

Chapter 7: Customizing Indentation 31

CC Mode automatically adds in the column of the component’s relative buffer position and
we don’t the column offset added in twice.

The function should return nil if it’s used in a situation where it doesn’t want to do any
decision. If the function is used in a list expression (see Chapter 7 [Customizing Indentation],
page 22), that will cause CC Mode to go on and check the next entry in the list.

Now, to associate the function c-lineup-streamop with the stream-op syntactic sym-
bol, we can add something like the following to our c++-mode-hook10:

(c-set-offset ’stream-op ’c-lineup-streamop)

Now the function looks like this after re-indenting (using C-c C-q):

1: void main(int argc, char**)
2: {
3: cout << "There were "
4: << argc
5: << " arguments passed to the program"
6: << endl;
7: }

Custom indentation functions can be as simple or as complex as you like, and any
syntactic symbol that appears in c-offsets-alist can have a custom indentation function
associated with it.

CC Mode comes with an extensive set of predefined indentation functions, not all of
which are used by the default styles. So there’s a good chance the function you want
already exists. See Chapter 9 [Indentation Functions], page 48, for a list of them. If you
have written an indentation function that you think is generally useful, you’re very welcome
to contribute it; please contact bug-cc-mode@gnu.org.

7.5.2 Custom Brace and Colon Hanging

Syntactic symbols aren’t the only place where you can customize CC Mode with the
lisp equivalent of callback functions. Brace “hanginess” can also be determined by custom
functions associated with syntactic symbols on the c-hanging-braces-alist style variable.
Remember that ACTION ’s are typically a list containing some combination of the symbols
before and after (see Section 4.1.1 [Hanging Braces], page 8). However, an ACTION can
also be a function which gets called when a brace matching that syntactic symbol is entered.

These ACTION functions are called with two arguments: the syntactic symbol for the
brace, and the buffer position at which the brace was inserted. The ACTION function
is expected to return a list containing some combination of before and after, including
neither of them (i.e. nil). This return value has the normal brace hanging semantics.

As an example, CC Mode itself uses this feature to dynamically determine the hanginess
of braces which close “do-while” constructs:

10 It probably makes more sense to add this to c++-mode-hook than c-mode-common-hook since stream
operators are only relevant for C++.

Chapter 7: Customizing Indentation 32

void do_list(int count, char** atleast_one_string)
{

int i=0;
do {

handle_string(atleast_one_string[i]);
i++;

} while(i < count);
}

CC Mode assigns the block-close syntactic symbol to the brace that closes the do
construct, and normally we’d like the line that follows a block-close brace to begin on
a separate line. However, with “do-while” constructs, we want the while clause to follow
the closing brace. To do this, we associate the block-close symbol with the ACTION
function c-snug-do-while:

(defun c-snug-do-while (syntax pos)
"Dynamically calculate brace hanginess for do-while statements.

Using this function, ‘while’ clauses that end a ‘do-while’ block will
remain on the same line as the brace that closes that block.

See ‘c-hanging-braces-alist’ for how to utilize this function as an
ACTION associated with ‘block-close’ syntax."
(save-excursion
(let (langelem)
(if (and (eq syntax ’block-close)

(setq langelem (assq ’block-close c-syntactic-context))
(progn (goto-char (cdr langelem))

(if (= (following-char) ?{)
(forward-sexp -1))

(looking-at "\\<do\\>[^_]")))
’(before)

’(before after)))))

This function simply looks to see if the brace closes a “do-while” clause and if so, returns
the list ‘(before)’ indicating that a newline should be inserted before the brace, but not
after it. In all other cases, it returns the list ‘(before after)’ so that the brace appears
on a line by itself.

During the call to the brace hanging ACTION function, the variable c-syntactic-
context is bound to the full syntactic analysis list.

Note that for symmetry, colon hanginess should be customizable by allowing function
symbols as ACTIONs on the c-hanging-colon-alist style variable. Since no use has
actually been found for this feature, it isn’t currently implemented!

7.5.3 Customizing Semi-colons and Commas

You can also customize the insertion of newlines after semi-colons and commas, when
the auto-newline minor mode is enabled (see Chapter 4 [Minor Modes], page 7). This is

Chapter 7: Customizing Indentation 33

controlled by the style variable c-hanging-semi&comma-criteria, which contains a list
of functions that are called in the order they appear. Each function is called with zero
arguments, and is expected to return one of the following values:
• non-nil — A newline is inserted, and no more functions from the list are called.
• stop — No more functions from the list are called, but no newline is inserted.
• nil — No determination is made, and the next function in the list is called.

If every function in the list is called without a determination being made, then no
newline is added. The default value for this variable is a list containing a single function
which inserts newlines only after semi-colons which do not appear inside parenthesis lists
(i.e. those that separate for-clause statements).

Here’s an example of a criteria function, provided by CC Mode, that will prevent newlines
from being inserted after semicolons when there is a non-blank following line. Otherwise,
it makes no determination. To use, add this to the front of the c-hanging-semi&comma-
criteria list.

(defun c-semi&comma-no-newlines-before-nonblanks ()
(save-excursion
(if (and (eq last-command-char ?\;)

(zerop (forward-line 1))
(not (looking-at "^[\t]*$")))

’stop
nil)))

The function c-semi&comma-inside-parenlist is what prevents newlines from being
inserted inside the parenthesis list of for statements. In addition to c-semi&comma-no-
newlines-before-nonblanks described above, CC Mode also comes with the criteria func-
tion c-semi&comma-no-newlines-for-oneline-inliners, which suppresses newlines after
semicolons inside one-line inline method definitions (i.e. in C++ or Java).

7.5.4 Other Special Indentations

In ‘gnu’ style (see Section 7.4.1 [Built-in Styles], page 27), a minimum indentation is
imposed on lines inside top-level constructs. This minimum indentation is controlled by the
style variable c-label-minimum-indentation. The default value for this variable is 1.

One other customization variable is available in CC Mode: The style variable c-special-
indent-hook. This is a standard hook variable that is called after every line is indented
by CC Mode. You can use it to do any special indentation or line adjustments your style
dictates, such as adding extra indentation to constructors or destructor declarations in a
class definition, etc. Note however, that you should not change point or mark inside your
c-special-indent-hook functions (i.e. you’ll probably want to wrap your function in a
save-excursion).

Setting c-special-indent-hook in your style definition is handled slightly differently
than other variables. In your style definition, you should set the value for c-special-
indent-hook to a function or list of functions, which will be appended to c-special-
indent-hook using add-hook. That way, the current setting for the buffer local value of
c-special-indent-hook won’t be overridden.

Chapter 7: Customizing Indentation 34

Normally, the standard Emacs command M-; (indent-for-comment) will indent com-
ment only lines to comment-column. Some users however, prefer that M-; act just like TAB

for purposes of indenting comment-only lines; i.e. they want the comments to always indent
as they would for normal code, regardless of whether TAB or M-; were used. This behavior is
controlled by the variable c-indent-comments-syntactically-p. When nil (the default),
M-; indents comment-only lines to comment-column, otherwise, they are indented just as
they would be if TAB were typed.

Note that this has no effect for comment lines that are inserted with M-; at the end of
regular code lines. These comments will always start at comment-column.

Chapter 8: Syntactic Symbols 35

8 Syntactic Symbols

Here is a complete list of the recognized syntactic symbols as described in the c-offsets-
alist style variable, along with a brief description. More detailed descriptions follow.

string Inside a multi-line string.

c Inside a multi-line C style block comment.

defun-open
Brace that opens a top-level function definition.

defun-close
Brace that closes a top-level function definition.

defun-block-intro
The first line in a top-level defun.

class-open
Brace that opens a class definition.

class-close
Brace that closes a class definition.

inline-open
Brace that opens an in-class inline method.

inline-close
Brace that closes an in-class inline method.

func-decl-cont
The region between a function definition’s argument list and the function open-
ing brace (excluding K&R argument declarations). In C, you cannot put any-
thing but whitespace and comments in this region, however in C++ and Java,
throws declarations and other things can appear here.

knr-argdecl-intro
First line of a K&R C argument declaration.

knr-argdecl
Subsequent lines in a K&R C argument declaration.

topmost-intro
The first line in a “topmost” definition.

topmost-intro-cont
Topmost definition continuation lines.

member-init-intro
First line in a member initialization list.

member-init-cont
Subsequent member initialization list lines.

inher-intro
First line of a multiple inheritance list.

Chapter 8: Syntactic Symbols 36

inher-cont
Subsequent multiple inheritance lines.

block-open
Statement block open brace.

block-close
Statement block close brace.

brace-list-open
Open brace of an enum or static array list.

brace-list-close
Close brace of an enum or static array list.

brace-list-intro
First line in an enum or static array list.

brace-list-entry
Subsequent lines in an enum or static array list.

brace-entry-open
Subsequent lines in an enum or static array list where the line begins with an
open brace.

statement
A statement.

statement-cont
A continuation of a statement.

statement-block-intro
The first line in a new statement block.

statement-case-intro
The first line in a case block.

statement-case-open
The first line in a case block that starts with a brace.

substatement
The first line after a conditional or loop construct.

substatement-open
The brace that opens a substatement block.

case-label
A case or default label.

access-label
C++ access control label.

label Any non-special C label.

do-while-closure
The while line that ends a do-while construct.

Chapter 8: Syntactic Symbols 37

else-clause
The else line of an if-else construct.

catch-clause
The catch or finally (in Java) line of a try-catch construct.

comment-intro
A line containing only a comment introduction.

arglist-intro
The first line in an argument list.

arglist-cont
Subsequent argument list lines when no arguments follow on the same line as
the arglist opening paren.

arglist-cont-nonempty
Subsequent argument list lines when at least one argument follows on the same
line as the arglist opening paren.

arglist-close
The solo close paren of an argument list.

stream-op
Lines continuing a stream operator (C++ only).

inclass The line is nested inside a class definition.

cpp-macro
The start of a C preprocessor macro definition.

cpp-macro-cont
Subsequent lines of a multi-line C preprocessor macro definition.

friend A C++ friend declaration.

objc-method-intro
The first line of an Objective-C method. definition.

objc-method-args-cont
Lines continuing an Objective-C method. definition

objc-method-call-cont
Lines continuing an Objective-C method call.

extern-lang-open
Brace that opens an external language block.

extern-lang-close
Brace that closes an external language block.

inextern-lang
Analogous to inclass syntactic symbol, but used inside external language
blocks (e.g. extern "C" {).

namespace-open
Brace that opens a C++ namespace block.

Chapter 8: Syntactic Symbols 38

namespace-close
Brace that closes a C++ namespace block.

innamespace
Analogous to inextern-lang syntactic symbol, but used inside C++ namespace
blocks.

template-args-cont
C++ template argument list continuations.

inlambda Analogous to inclass syntactic symbol, but used inside lambda (i.e. anony-
mous) functions. Only used in Pike mode.

lambda-intro-cont
Lines continuing the header of a lambda function, i.e. between the lambda
keyword and the function body. Only used in Pike mode.

inexpr-statement
A statement block inside an expression. The gcc C extension of this is recog-
nized. It’s also used for the special functions that takes a statement block as
an argument in Pike.

inexpr-class
A class definition inside an expression. This is used for anonymous classes in
Java. It’s also used for anonymous array initializers in Java.

Most syntactic symbol names follow a general naming convention. When a line begins
with an open or close brace, the syntactic symbol will contain the suffix -open or -close
respectively.

Usually, a distinction is made between the first line that introduces a construct and lines
that continue a construct, and the syntactic symbols that represent these lines will contain
the suffix -intro or -cont respectively. As a sub-classification of this scheme, a line which
is the first of a particular brace block construct will contain the suffix -block-intro.

Let’s look at some examples to understand how this works. Remember that you can
check the syntax of any line by using C-c C-s.

1: void
2: swap(int& a, int& b)
3: {
4: int tmp = a;
5: a = b;
6: b = tmp;
7: int ignored =
8: a + b;
9: }

Line 1 shows a topmost-intro since it is the first line that introduces a top-level con-
struct. Line 2 is a continuation of the top-level construct introduction so it has the syntax
topmost-intro-cont. Line 3 shows a defun-open since it is the brace that opens a top-
level function definition. Line 9 is the corresponding defun-close since it contains the

Chapter 8: Syntactic Symbols 39

brace that closes the top-level function definition. Line 4 is a defun-block-intro, i.e. it
is the first line of a brace-block, enclosed in a top-level function definition.

Lines 5, 6, and 7 are all given statement syntax since there isn’t much special about
them. Note however that line 8 is given statement-cont syntax since it continues the
statement begun on the previous line.

Here’s another example, which illustrates some C++ class syntactic symbols:

1: class Bass
2: : public Guitar,
3: public Amplifiable
4: {
5: public:
6: Bass()
7: : eString(new BassString(0.105)),
8: aString(new BassString(0.085)),
9: dString(new BassString(0.065)),
10: gString(new BassString(0.045))
11: {
12: eString.tune(’E’);
13: aString.tune(’A’);
14: dString.tune(’D’);
15: gString.tune(’G’);
16: }
17: friend class Luthier;
18: }

As in the previous example, line 1 has the topmost-intro syntax. Here however, the
brace that opens a C++ class definition on line 4 is assigned the class-open syntax. Note
that in C++, classes, structs, and unions are essentially equivalent syntactically (and are very
similar semantically), so replacing the class keyword in the example above with struct or
union would still result in a syntax of class-open for line 41. Similarly, line 18 is assigned
class-close syntax.

Line 2 introduces the inheritance list for the class so it is assigned the inher-intro
syntax, and line 3, which continues the inheritance list is given inher-cont syntax.

Hitting C-c C-s on line 5 shows the following analysis:

((inclass . 58) (access-label . 67))

The primary syntactic symbol for this line is access-label as this a label keyword that
specifies access protection in C++. However, because this line is also a top-level construct
inside a class definition, the analysis actually shows two syntactic symbols. The other
syntactic symbol assigned to this line is inclass. Similarly, line 6 is given both inclass
and topmost-intro syntax:

1 This is the case even for C and Objective-C. For consistency, structs in all supported languages are
syntactically equivalent to classes. Note however that the keyword class is meaningless in C and
Objective-C.

Chapter 8: Syntactic Symbols 40

((inclass . 58) (topmost-intro . 60))

Line 7 introduces a C++ member initialization list and as such is given member-init-
intro syntax. Note that in this case it is not assigned inclass since this is not considered
a top-level construct. Lines 8 through 10 are all assigned member-init-cont since they
continue the member initialization list started on line 7.

Line 11’s analysis is a bit more complicated:

((inclass . 58) (inline-open))

This line is assigned a syntax of both inline-open and inclass because it opens an
in-class C++ inline method definition. This is distinct from, but related to, the C++ notion
of an inline function in that its definition occurs inside an enclosing class definition, which
in C++ implies that the function should be inlined. If though, the definition of the Bass
constructor appeared outside the class definition, the construct would be given the defun-
open syntax, even if the keyword inline appeared before the method name, as in:

class Bass
: public Guitar,
public Amplifiable

{
public:

Bass();
}

inline
Bass::Bass()

: eString(new BassString(0.105)),
aString(new BassString(0.085)),
dString(new BassString(0.065)),
gString(new BassString(0.045))

{
eString.tune(’E’);
aString.tune(’A’);
dString.tune(’D’);
gString.tune(’G’);

}

Returning to the previous example, line 16 is given inline-close syntax, while line 12
is given defun-block-open syntax, and lines 13 through 15 are all given statement syntax.
Line 17 is interesting in that its syntactic analysis list contains three elements:

((friend) (inclass . 58) (topmost-intro . 380))

The friend syntactic symbol is a modifier that typically does not have a relative buffer
position.

Chapter 8: Syntactic Symbols 41

Template definitions introduce yet another syntactic symbol:

1: ThingManager <int,
2: Framework::Callback *,
3: Mutex> framework_callbacks;

Here, line 1 is analyzed as a topmost-intro, but lines 2 and 3 are both analyzed as
template-args-cont lines.

Here is another (totally contrived) example which illustrates how syntax is assigned to
various conditional constructs:

1: void spam(int index)
2: {
3: for(int i=0; i<index; i++)
4: {
5: if(i == 10)
6: {
7: do_something_special();
8: }
9: else
10: do_something(i);
11: }
12: do {
13: another_thing(i--);
14: }
15: while(i > 0);
16: }

Only the lines that illustrate new syntactic symbols will be discussed.

Line 4 has a brace which opens a conditional’s substatement block. It is thus assigned
substatement-open syntax, and since line 5 is the first line in the substatement block, it
is assigned substatement-block-intro syntax. Lines 6 and 7 are assigned similar syntax.
Line 8 contains the brace that closes the inner substatement block. It is given the syntax
block-close, as are lines 11 and 14.

Line 9 is a little different — since it contains the keyword else matching the if statement
introduced on line 5, it is given the else-clause syntax. The try-catch constructs in C++
and Java are treated this way too, with the only difference that the catch, and in Java also
finally, is marked with catch-clause.

Line 10 is also slightly different. Because else is considered a conditional introducing
keyword2, and because the following substatement is not a brace block, line 10 is assigned
the substatement syntax.

2 The list of conditional keywords are (in C, C++, Objective-C, Java, and Pike): for, if, do, else, while,
and switch. C++ and Java have two additional conditional keywords: try and catch. Java also has the
finally and synchronized keywords.

Chapter 8: Syntactic Symbols 42

One other difference is seen on line 15. The while construct that closes a do conditional
is given the special syntax do-while-closure if it appears on a line by itself. Note that
if the while appeared on the same line as the preceding close brace, that line would have
been assigned block-close syntax instead.

Switch statements have their own set of syntactic symbols. Here’s an example:

1: void spam(enum Ingredient i)
2: {
3: switch(i) {
4: case Ham:
5: be_a_pig();
6: break;
7: case Salt:
8: drink_some_water();
9: break;
10: default:
11: {
12: what_is_it();
13: break;
14: }
15: }
14: }

Here, lines 4, 7, and 10 are all assigned case-label syntax, while lines 5 and 8 are
assigned statement-case-intro. Line 11 is treated slightly differently since it contains a
brace that opens a block — it is given statement-case-open syntax.

There are a set of syntactic symbols that are used to recognize constructs inside of brace
lists. A brace list is defined as an enum or aggregate initializer list, such as might statically
initialize an array of structs. The three special aggregate constructs in Pike, ({ }), ([])
and (< >), are treated as brace lists too. An example:

1: static char* ingredients[] =
2: {
3: "Ham",
4: "Salt",
5: NULL
6: }

Following convention, line 2 in this example is assigned brace-list-open syntax, and
line 3 is assigned brace-list-intro syntax. Likewise, line 6 is assigned brace-list-
close syntax. Lines 4 and 5 however, are assigned brace-list-entry syntax, as would all
subsequent lines in this initializer list.

Your static initializer might be initializing nested structures, for example:

Chapter 8: Syntactic Symbols 43

1: struct intpairs[] =
2: {
3: { 1, 2 },
4: {
5: 3,
6: 4
7: }
8: { 1,
9: 2 },

10: { 3, 4 }
11: }

Here, you’ve already seen the analysis of lines 1, 2, 3, and 11. On line 4, things get
interesting; this line is assigned brace-entry-open syntactic symbol because it’s a bracelist
entry line that starts with an open brace. Lines 5 and 6 (and line 9) are pretty standard,
and line 7 is a brace-list-close as you’d expect. Once again, line 8 is assigned as brace-
entry-open as is line 10.

External language definition blocks also have their own syntactic symbols. In this ex-
ample:

1: extern "C"
2: {
3: int thing_one(int);
4: int thing_two(double);
5: }

line 2 is given the extern-lang-open syntax, while line 5 is given the extern-lang-close
syntax. The analysis for line 3 yields: ((inextern-lang) (topmost-intro . 14)), where
inextern-lang is a modifier similar in purpose to inclass.

Similarly, C++ namespace constructs have their own associated syntactic symbols. In
this example:

1: namespace foo
2: {
3: void xxx() {}
4: }

line 2 is given the namespace-open syntax, while line 4 is given the namespace-close
syntax. The analysis for line 3 yields: ((innamespace) (topmost-intro . 17)), where
innamespace is a modifier similar in purpose to inextern-lang and inclass.

A number of syntactic symbols are associated with parenthesis lists, a.k.a argument lists,
as found in function declarations and function calls. This example illustrates these:

Chapter 8: Syntactic Symbols 44

1: void a_function(int line1,
2: int line2);
3:
4: void a_longer_function(
5: int line1,
6: int line2
7:);
8:
9: void call_them(int line1, int line2)
10: {
11: a_function(
12: line1,
13: line2
14:);
15:
16: a_longer_function(line1,
17: line2);
18: }

Lines 5 and 12 are assigned arglist-intro syntax since they are the first line following
the open parenthesis, and lines 7 and 14 are assigned arglist-close syntax since they
contain the parenthesis that closes the argument list.

Lines that continue argument lists can be assigned one of two syntactic symbols. For
example, Lines 2 and 17 are assigned arglist-cont-nonempty syntax. What this means is
that they continue an argument list, but that the line containing the parenthesis that opens
the list is not empty following the open parenthesis. Contrast this against lines 6 and 13
which are assigned arglist-cont syntax. This is because the parenthesis that opens their
argument lists is the last character on that line.

Note that there is no arglist-open syntax. This is because any parenthesis that opens
an argument list, appearing on a separate line, is assigned the statement-cont syntax
instead.

A few miscellaneous syntactic symbols that haven’t been previously covered are illus-
trated by this C++ example:

Chapter 8: Syntactic Symbols 45

1: void Bass::play(int volume)
2: const
3: {
4: /* this line starts a multi-line
5: * comment. This line should get ‘c’ syntax */
6:
7: char* a_multiline_string = "This line starts a multi-line \
8: string. This line should get ‘string’ syntax.";
9:
10: note:
11: {
12: #ifdef LOCK
13: Lock acquire();
14: #endif // LOCK
15: slap_pop();
16: cout << "I played "
17: << "a note\n";
18: }
19: }

The lines to note in this example include:

• Line 2 is assigned the func-decl-cont syntax.

• Line 4 is assigned both defun-block-intro and comment-intro syntax.

• Line 5 is assigned c syntax.

• Line 6 which, even though it contains nothing but whitespace, is assigned defun-block-
intro. Note that the appearance of the comment on lines 4 and 5 do not cause line
6 to be assigned statement syntax because comments are considered to be syntactic
whitespace, which are ignored when analyzing code.

• Line 8 is assigned string syntax.

• Line 10 is assigned label syntax.

• Line 11 is assigned block-open syntax.

• Lines 12 and 14 are assigned cpp-macro syntax in addition to the normal syntactic sym-
bols (statement-block-intro and statement, respectively). Normally cpp-macro is
configured to cancel out the normal syntactic context to make all preprocessor directives
stick to the first column, but that’s easily changed if you want preprocessor directives
to be indented like the rest of the code.

• Line 17 is assigned stream-op syntax.

Multi-line C preprocessor macros are now (somewhat) supported. At least CC Mode
now recognizes the fact that it is inside a multi-line macro, and it properly skips such macros
as syntactic whitespace. In this example:

Chapter 8: Syntactic Symbols 46

1: #define LIST_LOOP(cons, listp) \
2: for (cons = listp; !NILP (cons); cons = XCDR (cons)) \
3: if (!CONSP (cons)) \
4: signal_error ("Invalid list format", listp); \
5: else

line 1 is given the syntactic symbol cpp-macro. This first line of a macro is always given
this symbol. The second and subsequent lines (e.g. lines 2 through 5) are given the cpp-
macro-cont syntactic symbol, with a relative buffer position pointing to the # which starts
the macro definition.

In Objective-C buffers, there are three additional syntactic symbols assigned to various
message calling constructs. Here’s an example illustrating these:

1: - (void)setDelegate:anObject
2: withStuff:stuff
3: {
4: [delegate masterWillRebind:self
5: toDelegate:anObject
6: withExtraStuff:stuff];
7: }

Here, line 1 is assigned objc-method-intro syntax, and line 2 is assigned objc-method-
args-cont syntax. Lines 5 and 6 are both assigned objc-method-call-cont syntax.

Java has a concept of anonymous classes, which may look something like this:

1: public void watch(Observable o) {
2: o.addObserver(new Observer() {
3: public void update(Observable o, Object arg) {
4: history.addElement(arg);
5: }
6: });
7: }

The brace following the new operator opens the anonymous class. Lines 3 and 6 are
assigned the inexpr-class syntax, besides the inclass symbol used in normal classes.
Thus, the class will be indented just like a normal class, with the added indentation given
to inexpr-class.

There are a few occasions where a statement block may be used inside an expression.
One is in C code using the gcc extension for this, e.g:

1: int res = ({
2: int y = foo (); int z;
3: if (y > 0) z = y; else z = - y;
4: z;
5: });

Chapter 8: Syntactic Symbols 47

Lines 2 and 5 get the inexpr-statement syntax, besides the symbols they’d get in a
normal block. Therefore, the indentation put on inexpr-statement is added to the normal
statement block indentation.

In Pike code, there are a few other situations where blocks occur inside statements, as
illustrated here:

1: array itgob()
2: {
3: string s = map (backtrace()[-2][3..],
4: lambda
5: (mixed arg)
6: {
7: return sprintf ("%t", arg);
8: }) * ", " + "\n";
9: return catch {

10: write (s + "\n");
11: };
12: }

Lines 4 through 8 contain a lambda function, which CC Mode recognizes by the lambda
keyword. If the function argument list is put on a line of its own, as in line 5, it gets the
lambda-intro-cont syntax. The function body is handled as an inline method body, with
the addition of the inlambda syntactic symbol. This means that line 6 gets inlambda and
inline-open, and line 8 gets inline-close3.

On line 9, catch is a special function taking a statement block as its argument. The
block is handled as an in-expression statement with the inexpr-statement syntax, just like
the gcc extended C example above. The other similar special function, gauge, is handled
like this too.

Two other syntactic symbols can appear in old style, non-prototyped C code4:

1: int add_three_integers(a, b, c)
2: int a;
3: int b;
4: int c;
5: {
6: return a + b + c;
7: }

Here, line 2 is the first line in an argument declaration list and so is given the knr-
argdecl-intro syntactic symbol. Subsequent lines (i.e. lines 3 and 4 in this example), are
given knr-argdecl syntax.

3 You might wonder why it doesn’t get inlambda too. It’s because the closing brace is relative to the
opening brace, which stands on its own line in this example. If the opening brace was hanging on the
previous line, then the closing brace would get the inlambda syntax too to be indented correctly.

4 a.k.a. K&R C, or Kernighan & Ritchie C

Chapter 9: Indentation Functions 48

9 Indentation Functions

Often there are cases when a simple offset setting on a syntactic symbol isn’t enough
to get the desired indentation. Therefore, it’s also possible to use a indentation function
(a.k.a. line-up function) for a syntactic symbol.

CC Mode comes with many predefined indentation functions for common situations.
If none of these does what you want, you can write your own, see Section 7.5.1 [Custom
Indentation Functions], page 30. If you do, it’s probably a good idea to start working from
one of these predefined functions, they can be found in the file ‘cc-align.el’.

For every function below there is a “works with” list that indicates which syntactic
symbols the function is intended to be used with.

c-lineup-arglist
Line up the current argument line under the first argument.

Works with: arglist-cont-nonempty.

c-lineup-arglist-intro-after-paren
Line up a line just after the open paren of the surrounding paren or brace block.

Works with: defun-block-intro, brace-list-intro, statement-block-
intro, statement-case-intro, arglist-intro.

c-lineup-arglist-close-under-paren
Set e.g. your arglist-close syntactic symbol to this line-up function so that
parentheses that close argument lists will line up under the parenthesis that
opened the argument list.

Works with: defun-close, class-close, inline-close, block-close,
brace-list-close, arglist-close, extern-lang-close, namespace-close
(for most of these, a zero offset will normally produce the same result, though).

c-lineup-close-paren
Line up the closing paren under its corresponding open paren if the open paren
is followed by code. If the open paren ends its line, no indentation is added.
E.g:

main (int,
char **
) // c-lineup-close-paren

and

main (
int, char **

) // c-lineup-close-paren

Works with: defun-close, class-close, inline-close, block-close, brace-
list-close, arglist-close, extern-lang-close, namespace-close.

Chapter 9: Indentation Functions 49

c-lineup-streamop
Line up C++ stream operators (i.e. ‘<<’ and ‘>>’).
Works with: stream-op.

c-lineup-multi-inher
Line up the classes in C++ multiple inheritance clauses and member initializers
under each other. E.g:

Foo::Foo (int a, int b):
Cyphr (a),
Bar (b) // c-lineup-multi-inher

and

class Foo
: public Cyphr,
public Bar // c-lineup-multi-inher

and

Foo::Foo (int a, int b)
: Cyphr (a)
, Bar (b) // c-lineup-multi-inher

Works with: inher-cont, member-init-cont.

c-lineup-java-inher
Line up Java implements and extends declarations. If class names follows on
the same line as the ‘implements’/‘extends’ keyword, they are lined up under
each other. Otherwise, they are indented by adding c-basic-offset to the
column of the keyword. E.g:

class Foo
extends

Bar // c-lineup-java-inher

<--> c-basic-offset

and

class Foo
extends Cyphr,

Bar // c-lineup-java-inher

Works with: inher-cont.

c-lineup-java-throws
Line up Java throws declarations. If exception names follows on the same
line as the throws keyword, they are lined up under each other. Otherwise,

Chapter 9: Indentation Functions 50

they are indented by adding c-basic-offset to the column of the ‘throws’
keyword. The ‘throws’ keyword itself is also indented by c-basic-offset
from the function declaration start if it doesn’t hang. E.g:

int foo()
throws // c-lineup-java-throws

Bar // c-lineup-java-throws

<--><--> c-basic-offset

and

int foo() throws Cyphr,
Bar, // c-lineup-java-throws
Vlod // c-lineup-java-throws

Works with: func-decl-cont.

c-indent-one-line-block
Indent a one line block c-basic-offset extra. E.g:

if (n > 0)
{m+=n; n=0;} // c-indent-one-line-block

<--> c-basic-offset

and

if (n > 0)
{ // c-indent-one-line-block

m+=n; n=0;
}

The block may be surrounded by any kind of parenthesis characters. nil is
returned if the line doesn’t start with a one line block, which makes the function
usable in list expressions.
Works with: Almost all syntactic symbols, but most useful on the -open sym-
bols.

c-indent-multi-line-block
Indent a multi line block c-basic-offset extra. E.g:

int *foo[] = {
NULL,
{17}, // c-indent-multi-line-block

and

Chapter 9: Indentation Functions 51

int *foo[] = {
NULL,

{ // c-indent-multi-line-block
17
},

<--> c-basic-offset

The block may be surrounded by any kind of parenthesis characters. nil is
returned if the line doesn’t start with a multi line block, which makes the
function usable in list expressions.
Works with: Almost all syntactic symbols, but most useful on the -open sym-
bols.

c-lineup-C-comments
Line up C block comment continuation lines. Various heuristics are used to
handle most of the common comment styles. Some examples:

/* /** /*
* text * text text
*/ */ */

/* text /* /**
text ** text ** text

*/ */ */

/**
* text
***/

/**
Free form text comments:

In comments with a long delimiter line at the
start, the indentation is kept unchanged for lines
that start with an empty comment line prefix. The
delimiter line is whatever matches the
comment-start-skip regexp.

**/

The style variable c-comment-prefix-regexp is used to recognize the comment
line prefix, e.g. the ‘*’ that usually starts every line inside a comment.
Works with: The c syntactic symbol.

c-lineup-comment
Line up a comment-only line according to the style variable c-comment-only-
line-offset. If the comment is lined up with a comment starter on the pre-
vious line, that alignment is preserved.
c-comment-only-line-offset specifies the extra offset for the line. It can
contain an integer or a cons cell of the form

Chapter 9: Indentation Functions 52

(<non-anchored-offset> . <anchored-offset>)

where non-anchored-offset is the amount of offset given to non-column-zero
anchored lines, and anchored-offset is the amount of offset to give column-zero
anchored lines. Just an integer as value is equivalent to (<value> . -1000).
Works with: comment-intro.

c-lineup-runin-statements
Line up statements for coding standards which place the first statement in a
block on the same line as the block opening brace1. E.g:

int main()
{ puts (\"Hello world!\");
return 0; // c-lineup-runin-statements

}

If there is no statement after the opening brace to align with, nil is returned.
This makes the function usable in list expressions.
Works with: The statement syntactic symbol.

c-lineup-math
Line up the current line after the equal sign on the first line in the statement.
If there isn’t any, indent with c-basic-offset. If the current line contains an
equal sign too, try to align it with the first one.
Works with: statement-cont.

c-lineup-template-args
Line up the arguments of a template argument list under each other, but only
in the case where the first argument is on the same line as the opening ‘<’.
To allow this function to be used in a list expression, nil is returned if there’s
no template argument on the first line.
Works with: template-args-cont.

c-lineup-ObjC-method-call
For Objective-C code, line up selector args as elisp-mode does with function
args: go to the position right after the message receiver, and if you are at the
end of the line, indent the current line c-basic-offset columns from the opening
bracket; otherwise you are looking at the first character of the first method call
argument, so lineup the current line with it.
Works with: objc-method-call-cont.

c-lineup-ObjC-method-args
For Objective-C code, line up the colons that separate args. The colon on the
current line is aligned with the one on the first line.
Works with: objc-method-args-cont.

1 Run-in style doesn’t really work too well. You might need to write your own custom indentation functions
to better support this style.

Chapter 9: Indentation Functions 53

c-lineup-ObjC-method-args-2
Similar to c-lineup-ObjC-method-args but lines up the colon on the current
line with the colon on the previous line.
Works with: objc-method-args-cont.

c-lineup-inexpr-block
This can be used with the in-expression block symbols to indent the whole block
to the column where the construct is started. E.g. for Java anonymous classes,
this lines up the class under the ‘new’ keyword, and in Pike it lines up the
lambda function body under the ‘lambda’ keyword. Returns nil if the block
isn’t part of such a construct.
Works with: inlambda, inexpr-statement, inexpr-class.

c-lineup-whitesmith-in-block
Line up lines inside a block in Whitesmith style. It’s done in a way that works
both when the opening brace hangs and when it doesn’t. E.g:

something
{
foo; // c-lineup-whitesmith-in-block
}

and

something {
foo; // c-lineup-whitesmith-in-block
}

<--> c-basic-offset

In the first case the indentation is kept unchanged, in the second c-basic-
offset is added.
Works with: defun-close, defun-block-intro, block-close, brace-
list-close, brace-list-intro, statement-block-intro, inclass,
inextern-lang, innamespace.

c-lineup-dont-change
This lineup function makes the line stay at whatever indentation it already has;
think of it as an identity function for lineups. It is used for cpp-macro-cont
lines.
Works with: Any syntactic symbol.

Chapter 10: Performance Issues 54

10 Performance Issues

C and its derivative languages are highly complex creatures. Often, ambiguous code
situations arise that require CC Mode to scan large portions of the buffer to determine
syntactic context. Such pathological code1 can cause CC Mode to perform fairly badly. This
section identifies some of the coding styles to watch out for, and suggests some workarounds
that you can use to improve performance.

Because CC Mode has to scan the buffer backwards from the current insertion point,
and because C’s syntax is fairly difficult to parse in the backwards direction, CC Mode
often tries to find the nearest position higher up in the buffer from which to begin a forward
scan. The farther this position is from the current insertion point, the slower the mode
gets. Some coding styles can even force CC Mode to scan from the beginning of the buffer
for every line of code!

One of the simplest things you can do to reduce scan time, is make sure any brace that
opens a top-level construct2 always appears in the leftmost column. This is actually an
Emacs constraint, as embodied in the beginning-of-defun function which CC Mode uses
heavily. If you insist on hanging top-level open braces on the right side of the line, then you
might want to set the variable defun-prompt-regexp to something reasonable, however
that “something reasonable” is difficult to define, so CC Mode doesn’t do it for you.

A special note about defun-prompt-regexp in Java mode: while much of the early
sample Java code seems to encourage a style where the brace that opens a class is hung
on the right side of the line, this is not a good style to pursue in Emacs. CC Mode comes
with a variable c-Java-defun-prompt-regexp which tries to define a regular expression
usable for this style, but there are problems with it. In some cases it can cause beginning-
of-defun to hang3. For this reason, it is not used by default, but if you feel adventurous,
you can set defun-prompt-regexp to it in your mode hook. In any event, setting and rely
on defun-prompt-regexp will definitely slow things down anyway because you’ll be doing
regular expression searches for every line you indent, so you’re probably screwed either way!

Another alternative for XEmacs users, is to set the variable c-enable-xemacs-
performance-kludge-p to non-nil. This tells CC Mode to use XEmacs-specific built-in
functions which, in some circumstances, can locate the top-most opening brace much
quicker than beginning-of-defun. Preliminary testing has shown that for styles where
these braces are hung (e.g. most JDK-derived Java styles), this hack can improve
performance of the core syntax parsing routines from 3 to 60 times. However, for styles
which do conform to Emacs’ recommended style of putting top-level braces in column
zero, this hack can degrade performance by about as much. Thus this variable is set to
nil by default, since the Emacs-friendly styles should be more common (and encouraged!).
Note that this variable has no effect in Emacs since the necessary built-in functions don’t
exist (in Emacs 20.2 or 20.3 as of this writing 27-Apr-1998).

You will probably notice pathological behavior from CC Mode when working in files
containing large amounts of C preprocessor macros. This is because Emacs cannot skip
backwards over these lines as quickly as it can comments.

1 such as the output of lex(1)!
2 E.g. a function in C, or outermost class definition in C++ or Java.
3 This has been observed in Emacs 19.34 and XEmacs 19.15.

Chapter 10: Performance Issues 55

Previous versions of CC Mode had potential performance problems when recognizing
K&R style function argument declarations. This was because there are ambiguities in
the C syntax when K&R style argument lists are used4. CC Mode has adopted BOCM’s
convention for limiting the search: it assumes that argdecls are indented at least one space,
and that the function headers are not indented at all. With current versions of CC Mode,
user customization of c-recognize-knr-p is deprecated. Just don’t put argdecls in column
zero!

You might want to investigate the speed-ups contained in the file ‘cc-lobotomy.el’,
which comes as part of the CC Mode distribution, but is completely unsupported. As
mentioned previous, CC Mode always trades speed for accuracy, however it is recognized
that sometimes you need speed and can sacrifice some accuracy in indentation. The file
‘cc-lobotomy.el’ contains hacks that will “dumb down” CC Mode in some specific ways,
making that trade-off of accurancy for speed. I won’t go into details of its use here; you
should read the comments at the top of the file, and look at the variable cc-lobotomy-
pith-list for details.

4 It is hard to distinguish them from top-level declarations.

Chapter 11: Limitations and Known Bugs 56

11 Limitations and Known Bugs

• Re-indenting large regions or expressions can be slow.
• c-indent-exp has not been fully optimized. It essentially equivalent to hitting TAB

(c-indent-command) on every line. Some information is cached from line to line, but
such caching invariable causes inaccuracies in analysis in some bizarre situations.

• XEmacs versions from 19.15 until (as of this writing 12-Mar-1998) 20.4 contain a vari-
able called signal-error-on-buffer-boundary. This was intended as a solution to
user interface problems associated with buffer movement and the zmacs-region de-
activation on errors. However, setting this variable to a non-default value had the
deleterious side effect of breaking many built-in primitive functions. Most users will
not be affected since they never change the value of this variable. Do not set this vari-
able to nil; you will cause serious problems in CC Mode and probably other XEmacs
packages! As of at least XEmacs 20.4, the effects this variable tried to correct have
been fixed in other, better ways.

Appendix A: Frequently Asked Questions 57

Appendix A Frequently Asked Questions

Q. How do I re-indent the whole file?
A. Visit the file and hit C-x h to mark the whole buffer. Then hit C-M-\.

Q. How do I re-indent the entire function? C-M-x doesn’t work.
A. C-M-x is reserved for future Emacs use. To re-indent the entire function hit
C-c C-q.

Q. How do I re-indent the current block?
A. First move to the brace which opens the block with C-M-u, then re-indent
that expression with C-M-q.

Q. Why doesn’t the RET key indent the new line?
A. Emacs’ convention is that RET just adds a newline, and that C-j adds a
newline and indents it. You can make RET do this too by adding this to your
c-mode-common-hook:

(define-key c-mode-base-map "\C-m" ’c-context-line-break)

This is a very common question. If you want this to be the default behavior,
don’t lobby me, lobby RMS! :-)

Q. I put (c-set-offset ’substatement-open 0) in my ‘.emacs’ file but I get
an error saying that c-set-offset’s function definition is void.
A. This means that CC Mode wasn’t loaded into your Emacs session by the
time the c-set-offset call was reached, most likely because CC Mode is being
autoloaded. Instead of putting the c-set-offset line in your top-level ‘.emacs’
file, put it in your c-mode-common-hook, or simply modify c-offsets-alist
directly:

(setq c-offsets-alist ’((substatement-open . 0)))

Q. How do I make strings, comments, keywords, and other constructs appear in
different colors, or in bold face, etc.?
A. “Syntax Colorization” is a standard Emacs feature, controlled by font-
lock-mode. CC Mode does not contain font-lock definitions for any of its
supported languages.

Q. M-a and M-e used to move over entire balanced brace lists, but now they move
into blocks. How do I get the old behavior back?
A. Use C-M-f and C-M-b to move over balanced brace blocks. Use M-a and M-e
to move by statements, which will also move into blocks.

Appendix A: Frequently Asked Questions 58

Q. Whenever I try to indent a line or type an “electric” key such as ;, {, or },
I get an error that look like this: Invalid function: (macro . #[.... What
gives?
A. This is a common error when CC Mode hasn’t been compiled correctly,
especially under Emacs 19.341. If you are using the standalone CC Mode dis-
tribution, try recompiling it according to the instructions in the ‘README’ file.

1 Technically, it’s because some macros wasn’t defined during the compilation, so the byte compiler put
in function calls instead of the macro expansions. Later, when the interpreter tries to call the macros as
functions, it shows this (somewhat cryptic) error message.

Appendix B: Getting the Latest CC Mode Release 59

Appendix B Getting the Latest CC Mode Release

CC Mode is standard with all versions of Emacs since 19.34 and of XEmacs since 19.16.
Due to release schedule skew, it is likely that all of these Emacsen have old versions of

CC Mode and so should be upgraded. Access to the CC Mode source code, as well as more
detailed information on Emacsen compatibility, etc. are all available via the Web at:

http://cc-mode.sourceforge.net/

Old URLs, including the FTP URLs, should no longer be used.
There are many files under these directories; you can pick up the entire distribution

(named cc-mode.tar.gz; a gzip’d tar file), or any of the individual files, including
PostScript documentation.

Appendix C: Mailing Lists and Submitting Bug Reports 60

Appendix C Mailing Lists and Submitting Bug
Reports

To report bugs, use the C-c C-b (c-submit-bug-report) command. This provides vital
information we need to reproduce your problem. Make sure you include a concise, but
complete code example. Please try to boil your example down to just the essential code
needed to reproduce the problem, and include an exact recipe of steps needed to expose the
bug. Be especially sure to include any code that appears before your bug example, if you
think it might affect our ability to reproduce it.

Please try to produce the problem in an Emacs instance without any customizations
loaded (i.e. start it with the -q -no-site-file arguments). If it works correctly there,
the problem might be caused by faulty customizations in either your own or your site
configuration. In that case, we’d appreciate if you isolate the Emacs Lisp code that trigs
the bug and include it in your report.

Bug reports are now sent to the following email addresses: bug-cc-mode@gnu.org and
bug-gnu-emacs@gnu.org; the latter is mirrored on the Usenet newsgroup gnu.emacs.bug.
You can send other questions and suggestions (kudos? ;-) to bug-cc-mode@gnu.org.

If you want to get announcements of new CC Mode releases, send the word subscribe
in the body of a message to cc-mode-announce-request@lists.sourceforge.net.
Announcements will also be posted to the Usenet newsgroups gnu.emacs.sources,
comp.emacs and comp.emacs.xemacs.

Appendix D: Sample .emacs file 61

Appendix D Sample .emacs file

;; Here’s a sample .emacs file that might help you along the way. Just
;; copy this region and paste it into your .emacs file. You may want to
;; change some of the actual values.

(defconst my-c-style
’((c-tab-always-indent . t)
(c-comment-only-line-offset . 4)
(c-hanging-braces-alist . ((substatement-open after)

(brace-list-open)))
(c-hanging-colons-alist . ((member-init-intro before)

(inher-intro)
(case-label after)
(label after)
(access-label after)))

(c-cleanup-list . (scope-operator
empty-defun-braces
defun-close-semi))

(c-offsets-alist . ((arglist-close . c-lineup-arglist)
(substatement-open . 0)
(case-label . 4)
(block-open . 0)
(knr-argdecl-intro . -)))

(c-echo-syntactic-information-p . t)
)

"My C Programming Style")

;; offset customizations not in my-c-style
(setq c-offsets-alist ’((member-init-intro . ++)))

;; Customizations for all modes in CC Mode.
(defun my-c-mode-common-hook ()
;; add my personal style and set it for the current buffer
(c-add-style "PERSONAL" my-c-style t)
;; other customizations
(setq tab-width 8

;; this will make sure spaces are used instead of tabs
indent-tabs-mode nil)

;; we like auto-newline and hungry-delete
(c-toggle-auto-hungry-state 1)
;; key bindings for all supported languages. We can put these in
;; c-mode-base-map because c-mode-map, c++-mode-map, objc-mode-map,
;; java-mode-map, idl-mode-map, and pike-mode-map inherit from it.
(define-key c-mode-base-map "\C-m" ’c-context-line-break)
)

(add-hook ’c-mode-common-hook ’my-c-mode-common-hook)

Concept Index 62

Concept Index

-
-block-intro syntactic symbols 38
-close syntactic symbols . 38
-cont syntactic symbols . 38
-intro syntactic symbols . 38
-open syntactic symbols . 38

A
access-label syntactic symbol 39
adaptive fill mode . 15
adding styles . 29
announcement mailing list . 60
arglist-close syntactic symbol 44
arglist-cont syntactic symbol 44
arglist-cont-nonempty syntactic symbol 44
arglist-intro syntactic symbol 44
auto fill mode . 15
auto-newline insertion . 7

B
block-close syntactic symbol 8, 41
block-open syntactic symbol 8, 45
BOCM . 1
brace lists . 42
brace-entry-open syntactic symbol 8, 42
brace-list-close syntactic symbol 8, 42
brace-list-entry syntactic symbol 42
brace-list-intro syntactic symbol 8, 42
brace-list-open syntactic symbol 8, 42
BSD style . 28
bug report mailing list . 60
bugs . 56
built-in styles . 27

C
c syntactic symbol . 45
case-label syntactic symbol 42
catch-clause syntactic symbol 41
‘cc-compat.el’ file . 1
‘cc-lobotomy.el’ file . 55
‘cc-mode-18.el’ file . 2
class-close syntactic symbol 8, 39
class-open syntactic symbol 8, 39
clean-ups . 10
comment line prefix . 15
comment-intro syntactic symbol 45
comment-only line . 4
cpp-macro syntactic symbol 45

cpp-macro-cont syntactic symbol 45

custom indentation functions 30

customizing brace hanging . 31

customizing colon hanging . 32

customizing indentation . 22

customizing semi-colons and commas 32

D
defun-block-intro syntactic symbol 38

defun-close syntactic symbol 8, 38

defun-open syntactic symbol 8, 38

do-while-closure syntactic symbol 41

E
electric characters . 7

electric commands . 7

Ellemtel style . 28

else-clause syntactic symbol 41

extern-lang-close syntactic symbol 8, 43

extern-lang-open syntactic symbol 8, 43

F
FAQ . 57

file styles . 29

Filladapt mode . 16

frequently asked questions . 57

friend syntactic symbol . 40

func-decl-cont syntactic symbol 45

G
GNU indent program . 18

GNU style . 27

H
hanging braces . 8

hanging colons . 9

hanging commas . 9

hanging semi-colons . 9

hooks . 26

hungry-deletion of whitespace 13

Concept Index 63

I
in-class inline methods . 40
inclass syntactic symbol 39, 43
indentation calculation . 5
indentation commands . 18
indentation engine . 3
indentation functions . 22, 48
inexpr-class syntactic symbol 46
inexpr-class-close symbol . 8
inexpr-class-open symbol . 8
inexpr-statement syntactic symbol 46, 47
inextern-lang syntactic symbol 43
inher-cont syntactic symbol 39
inher-intro syntactic symbol 39
inlambda syntactic symbol 47
inline-close syntactic symbol 8, 40
inline-open syntactic symbol 8, 40
innamespace syntactic symbol 43
interactive customization . 23

J
Java style . 28
Javadoc markup . 17

K
K&R style . 28
knr-argdecl syntactic symbol 47
knr-argdecl-intro syntactic symbol 47

L
label syntactic symbol . 45
lambda-intro-cont syntactic symbol 47
limitations . 56
line-up functions . 48
Linux style . 28
literal . 7, 10, 13, 19
local variables . 29

M
mailing lists . 60
member-init-cont syntactic symbol 40
member-init-intro syntactic symbol 40
movement commands . 19
multi-line macros . 45

N
namespace-close syntactic symbol 8, 43
namespace-open syntactic symbol 8, 43

O
objc-method-args-cont syntactic symbol 46
objc-method-call-cont syntactic symbol 46
objc-method-intro syntactic symbol 46

P
paragraph fill . 15
performance issues . 54
permanent customization . 25
Pike autodoc markup . 17
Python style . 28

R
relative buffer position . 3
reporting bugs . 60

S
statement syntactic symbol 39
statement-case-intro syntactic symbol 42
statement-case-open syntactic symbol 8, 42
statement-cont syntactic symbol 39
stream-op syntactic symbol 31, 45
string syntactic symbol . 45
Stroustrup style . 28
style variables . 27
styles . 26
substatement . 4
substatement block . 4
substatement syntactic symbol 41
substatement-block-intro syntactic symbol 41
substatement-open syntactic symbol 8, 41
syntactic analysis . 3
syntactic component . 3
syntactic component list . 3
syntactic symbol . 3
syntactic symbols . 35
syntactic whitespace . 7, 45

T
topmost-intro syntactic symbol 38
topmost-intro-cont syntactic symbol 38

U
User style . 28

W
Whitesmith style . 28

Command Index 64

Command Index

Since most CC Mode commands are prepended with the string ‘c-’, each appears under
its c-<thing> name and its <thing> (c-) name.

A
add-style (c-) . 29
auto-fill-mode . 15

B
backslash-region (c-) . 21
backward-conditional (c-) 20
backward-delete-char-untabify 13
backward-into-nomenclature (c-) 21
beginning-of-defun . 19, 54
beginning-of-defun (c-) . 19
beginning-of-statement (c-) 20

C
c-add-style . 29
c-backslash-region . 21
c-backward-conditional . 20
c-backward-into-nomenclature 21
c-beginning-of-defun . 19
c-beginning-of-statement 20
c-context-line-break . 17
c-down-conditional . 20
c-down-conditional-with-else 20
c-electric-backspace . 13
c-electric-brace . 8
c-electric-delete . 13
c-electric-lt-gt . 10
c-electric-paren . 10
c-electric-pound . 10
c-electric-slash . 10
c-electric-star . 10
c-end-of-defun . 19
c-end-of-statement . 20
c-fill-paragraph . 17
c-forward-conditional . 20
c-forward-into-nomenclature 21
c-indent-command . 18
c-indent-defun . 18
c-indent-exp . 18, 56
c-indent-multi-line-block 50
c-indent-new-comment-line 17
c-indent-one-line-block 50
c-lineup-arglist . 48
c-lineup-arglist-close-under-paren 48
c-lineup-arglist-intro-after-paren 48
c-lineup-C-comments . 51

c-lineup-close-paren . 48

c-lineup-comment . 51

c-lineup-dont-change . 53

c-lineup-inexpr-block . 53

c-lineup-java-inher . 49

c-lineup-java-throws . 49

c-lineup-math . 52

c-lineup-multi-inher . 49

c-lineup-ObjC-method-args 52

c-lineup-ObjC-method-args-2 52

c-lineup-ObjC-method-call 52

c-lineup-runin-statements 52

c-lineup-streamop . 31, 48

c-lineup-template-args . 52

c-lineup-whitesmith-in-block 53

c-mark-function . 18

c-mode . 1

c-scope-operator . 21

c-semi&comma-inside-parenlist 33

c-semi&comma-no-newlines-before-nonblanks

. 33

c-semi&comma-no-newlines-for-oneline-

inliners . 33

c-set-offset . 22

c-set-style . 29

c-setup-filladapt . 16

c-show-syntactic-information 3

c-snug-do-while . 32

c-submit-bug-report . 60

c-toggle-auto-hungry-state 7

c-toggle-auto-state . 7

c-toggle-hungry-state . 7

c-up-conditional . 20

c-up-conditional-with-else 20

c-version. 2

c++-mode . 1

context-line-break (c-) . 17

D
defun-prompt-regexp . 54

delete-char . 13

down-conditional (c-) . 20

down-conditional-with-else (c-) 20

Command Index 65

E
electric-backspace (c-) . 13
electric-brace (c-) . 8
electric-delete (c-) . 13
electric-lt-gt (c-) . 10
electric-paren (c-) . 10
electric-pound (c-) . 10
electric-slash (c-) . 10
electric-star (c-) . 10
end-of-defun . 19
end-of-defun (c-) . 19
end-of-statement (c-) . 20

F
fill-paragraph (c-) . 17
filladapt-mode . 16
forward-conditional (c-) 20
forward-into-nomenclature (c-) 21

I
idl-mode . 1
indent-command (c-) . 18
indent-defun (c-) . 18
indent-exp (c-) . 18, 56
indent-for-comment . 33
indent-multi-line-block (c-) 50
indent-new-comment-line (c-) 17
indent-one-line-block (c-) 50
indent-region . 18

J
java-mode . 1, 28

L
lineup-arglist (c-) . 48
lineup-arglist-close-under-paren (c-) 48
lineup-arglist-intro-after-paren (c-) 48
lineup-C-comments (c-) . 51
lineup-close-paren (c-) . 48
lineup-comment (c-) . 51
lineup-dont-change (c-) . 53
lineup-inexpr-block (c-) 53
lineup-java-inher (c-) . 49
lineup-java-throws (c-) . 49
lineup-math (c-) . 52
lineup-multi-inher (c-) . 49

lineup-ObjC-method-args (c-) 52
lineup-ObjC-method-args-2 (c-) 52
lineup-ObjC-method-call (c-) 52
lineup-runin-statements (c-) 52
lineup-streamop (c-) . 31, 48
lineup-template-args (c-) 52
lineup-whitesmith-in-block (c-) 53

M
mark-function (c-) . 18

O
objc-mode. 1

P
pike-mode. 1

S
scope-operator (c-) . 21
semi&comma-inside-parenlist (c-) 33
semi&comma-no-newlines-before-nonblanks (c-)

. 33
semi&comma-no-newlines-for-oneline-inliners

(c-) . 33
set-offset (c-) . 22
set-style (c-) . 29
setup-filladapt (c-) . 16
show-syntactic-information (c-) 3
snug-do-while (c-) . 32
submit-bug-report (c-) . 60

T
tab-to-tab-stop . 19
toggle-auto-hungry-state (c-) 7
toggle-auto-state (c-) . 7
toggle-hungry-state (c-) . 7

U
up-conditional (c-) . 20
up-conditional-with-else (c-) 20

V
version (c-) . 2

Key Index 66

Key Index

#
. 10

(
(. 10

)
) . 10

>
> . 10

<
< . 10

B
Backspace . 13

C
C-c . 29
C-c : . 21
C-c C-\ . 21
C-c C-a . 7
C-c C-b . 60
C-c C-d . 7
C-c C-n . 20
C-c C-o . 22
C-c C-p . 20

C-c C-q . 18
C-c C-s . 3
C-c C-t . 7
C-c C-u . 20
C-j . 57
C-M-\ . 57
C-M-q . 57
C-M-u . 57
C-M-x . 57
C-u . 7
C-x h . 57

D
DEL . 13

M
M-; . 33
M-a . 20
M-C-\ . 18
M-C-h . 18
M-C-q . 18
M-e . 20
M-j . 17
M-q . 17

R
RET . 57

T
TAB . 18, 19

Variable Index 67

Variable Index

Since most CC Mode variables are prepended with the string ‘c-’, each appears under
its c-<thing> name and its <thing> (c-) name.

A
adaptive-fill-first-line-regexp 15
adaptive-fill-mode . 15
adaptive-fill-regexp . 15

B
backslash-column (c-) . 21
backspace-function (c-) . 13
basic-offset (c-) . 22
block-comment-prefix (c-) 16

C
c-backslash-column . 21
c-backspace-function . 13
c-basic-offset . 22
c-block-comment-prefix . 16
c-cleanup-list . 10
c-comment-continuation-stars 16
c-comment-only-line-offset 51
c-comment-prefix-regexp 15
c-default-style . 28
c-delete-function . 13
c-echo-syntactic-information-p 6
c-electric-pound-behavior 10
c-enable-xemacs-performance-kludge-p 54
c-file-offsets . 29
c-file-style . 29
c-hanging-braces-alist 8, 31
c-hanging-colon-alist . 32
c-hanging-colons-alist . 9
c-hanging-semi&comma-criteria 32
c-ignore-auto-fill . 16
c-indent-comments-syntactically-p 33
c-indentation-style . 29
c-initialization-hook . 26
c-insert-tab-function . 19
c-Java-defun-prompt-regexp 54
c-label-minimum-indentation 33
c-mode-common-hook . 26, 28
c-mode-hook . 26
c-offsets-alist . 22, 35
c-old-style-variable-behavior 27
c-progress-interval . 19
c-recognize-knr-p . 54
c-special-indent-hook . 33
c-strict-syntax-p . 22

c-style-alist . 28, 29, 30
c-style-variables-are-local-p 25
c-syntactic-context . 32
c-tab-always-indent . 19
c++-mode-hook . 26
cc-lobotomy-pith-list . 55
cleanup-list (c-) . 10
comment-column . 33
comment-continuation-stars (c-) 16
comment-end . 15
comment-multi-line . 17
comment-only-line-offset (c-) 51
comment-prefix-regexp (c-) 15
comment-start . 15
comment-start-skip . 15, 51

D
default-style (c-) . 28
delete-function (c-) . 13
delete-key-deletes-forward 13

E
echo-syntactic-information-p (c-) 6
electric-pound-behavior (c-) 10
enable-xemacs-performance-kludge-p (c-) . . 54

F
file-offsets (c-) . 29
file-style (c-) . 29
filladapt-mode . 16

H
hanging-braces-alist (c-) 8, 31
hanging-colon-alist (c-) 32
hanging-colons-alist (c-) 9
hanging-semi&comma-criteria (c-) 32

I
idl-mode-hook . 26
ignore-auto-fill (c-) . 16
indent-comments-syntactically-p (c-) 33
indent-tabs-mode . 19
indentation-style (c-) . 29

Variable Index 68

initialization-hook (c-) 26

insert-tab-function (c-) 19

J
Java-defun-prompt-regexp (c-) 54

java-mode-hook . 26

L
label-minimum-indentation (c-) 33

M
mode-common-hook (c-) 26, 28

O
objc-mode-hook . 26

offsets-alist (c-) . 22, 35

old-style-variable-behavior (c-) 27

P
paragraph-ignore-fill-prefix 15
paragraph-separate . 15
paragraph-start . 15
pike-mode-hook . 26
progress-interval (c-) . 19

R
recognize-knr-p (c-) . 54

S
signal-error-on-buffer-boundary 56
special-indent-hook (c-) 33
strict-syntax-p (c-) . 22
style-alist (c-) . 28, 29, 30
style-variables-are-local-p (c-) 25
syntactic-context (c-) . 32

T
tab-always-indent (c-) . 19

i

Short Contents

1 Introduction . 1

2 Getting Connected . 2

3 New Indentation Engine . 3

4 Minor Modes . 7

5 Text Filling and Line Breaking . 15

6 Commands. 18

7 Customizing Indentation . 22

8 Syntactic Symbols . 35

9 Indentation Functions . 48

10 Performance Issues . 54

11 Limitations and Known Bugs . 56

Appendix A Frequently Asked Questions 57

Appendix B Getting the Latest CC Mode Release 59

Appendix C Mailing Lists and Submitting Bug Reports 60

Appendix D Sample .emacs file . 61

Concept Index . 62

Command Index . 64

Key Index . 66

Variable Index . 67

ii

Table of Contents

1 Introduction . 1

2 Getting Connected . 2

3 New Indentation Engine 3
3.1 Syntactic Analysis . 3
3.2 Indentation Calculation . 5

4 Minor Modes . 7
4.1 Auto-newline Insertion . 7

4.1.1 Hanging Braces . 8
4.1.2 Hanging Colons . 9
4.1.3 Hanging Semi-colons and Commas 9
4.1.4 Other Electric Commands . 10
4.1.5 Clean-ups . 10

4.2 Hungry-deletion of Whitespace . 13

5 Text Filling and Line Breaking 15

6 Commands . 18
6.1 Indentation Commands . 18
6.2 Movement Commands . 19
6.3 Other Commands . 21

7 Customizing Indentation 22
7.1 Interactive Customization . 23
7.2 Permanent Customization. 25
7.3 Hooks . 26
7.4 Styles . 26

7.4.1 Built-in Styles . 27
7.4.2 Adding Styles . 29
7.4.3 File Styles . 29

7.5 Advanced Customizations . 30
7.5.1 Custom Indentation Functions 30
7.5.2 Custom Brace and Colon Hanging 31
7.5.3 Customizing Semi-colons and Commas 32
7.5.4 Other Special Indentations . 33

8 Syntactic Symbols . 35

iii

9 Indentation Functions . 48

10 Performance Issues . 54

11 Limitations and Known Bugs 56

Appendix A Frequently Asked Questions. 57

Appendix B Getting the Latest CC Mode
Release . 59

Appendix C Mailing Lists and Submitting Bug
Reports . 60

Appendix D Sample .emacs file 61

Concept Index . 62

Command Index . 64

Key Index . 66

Variable Index . 67

